RelativityChallenge.Com Podcast Episode 2

Originally recorded in March 2007

Steven Bryant

info@RelativityChallenge.Com
www.RelativityChallenge.Com

This page is no longer used, but is retained to maintain the numbering of the remaining pages.

Einstein's transformation equations takes a set of input values and produces a set of output values.

Einstein performs several steps to create the equations that are then "normalized" to produce his final transformation equations.
(3)

Einstein performs four algebraic steps to produce his ξ transformation.

1
Begin with:
$\xi=c \tau$

$$
\begin{aligned}
& \text { Since } \\
& \qquad \tau=\alpha\left(t-\frac{v x^{\prime}}{c^{2}-v^{2}}\right) \\
& \text { Substitute } \tau \text { with: } \\
& \quad \alpha\left(t-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
\end{aligned}
$$

$$
\xi=c \tau
$$

$$
\xi=c \tau
$$

$$
=c \alpha\left(t-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
$$

$$
=c \alpha\left(t-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
$$

$$
=\alpha \frac{c^{2} x^{\prime}}{c^{2}-v^{2}}
$$

Since each statement must produce the same result, we can test the equality of each of Einstein's algebraic substitutions to determine if a problem exists.

Input Values

Statement

$$
\begin{array}{ll}
x=50 & \\
y=0 & v=5 \\
z=0 & \alpha=1 \\
t=10 &
\end{array}
$$

1

$$
\begin{aligned}
\xi & =\alpha \frac{x-v t}{1-\frac{v^{2}}{c^{2}}} \\
& =\alpha \frac{c^{2} x^{\prime}}{c^{2}-v^{2}}
\end{aligned}
$$

Results

Mathematically, a variable cannot simultaneously be both a dependent variable and an independent variable.

Einstein Says:

Mathematically correct interpretation

If we place $x^{\prime}=x$-vt, it is clear that a point at rest in the system k must have a system of values x^{\prime}, y, z, independent of time.

If we place $x^{\prime}=x$-vt, it is clear that a point at rest in the system k must have a system of values x^{\prime}, y, z, independent of time, where time is represented by t^{\prime}.

If we place $x^{\prime}=x$-vt, it is clear that a point at rest in the system k must have a system of values x^{\prime}, y, z, independent of time, where time is represented by t.

To correct Einstein's derivation, t is replaced with t' (in his partial differential equation) followed by performing the four algebraic steps, resulting in the ξ transformation.

1

Begin with:
$\xi=c \tau$
2

$$
\begin{aligned}
& \text { Since } \\
& \qquad \tau=\alpha\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}-v^{2}}\right) \\
& \text { Substitute } \tau \text { with: } \\
& \quad \alpha\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\xi & =c \tau \\
& =c \alpha\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\xi & =c \tau \\
& =c \alpha\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}-v^{2}}\right) \\
& =\alpha \frac{c^{2} x^{\prime}}{c^{2}-v^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } \\
& t^{\prime}=\frac{x^{\prime}}{c-v}
\end{aligned}
$$

Substitute t^{\prime} with:

$$
\frac{x^{\prime}}{c-v}
$$

3

$$
\xi=c \tau
$$

$$
=c \alpha\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
$$

$$
=\alpha \frac{c^{2} x^{\prime}}{c^{2}-v^{2}}
$$

$$
=\alpha \frac{x-v t}{1-\frac{v^{2}}{c^{2}}}
$$

While the problem occurs during the ξ derivation, it shows up in Einstein's τ equation. Einstein's original time transformation simplification is provided in column one and the corrected simplification is provided in column two.

1
When

$$
\tau=\alpha\left(t-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
$$

it simplifies as:

$$
\tau=\alpha\left(t-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
$$

$$
=\alpha \frac{t-\frac{v x}{c^{2}}}{1-\frac{v^{2}}{c^{2}}}
$$

2
When

$$
\tau=\alpha\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
$$

it simplifies as:

$$
\tau=\alpha\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}-v^{2}}\right)
$$

$$
=\frac{\alpha}{c}\left[\frac{x-v t}{1-\frac{v^{2}}{c^{2}}}\right]
$$

