RelativityChallenge.Com Podcast Episode 7

The equations of Complete and Incomplete Coordinate Systems

Originally recorded: September 27, 2007

Steven Bryant
email@RelativityChallenge.com
www.RelativityChallenge.com
blog.RelativityChallenge.com

Coordinate System Definition

- A basic Coordinate System is something that can be measured along one, two, or three dimensions
- Characteristics
I. One coordinate system can be put into motion with respect to another coordinate system

2. An object can be put into motion to travel between points in a coordinate system
3. There is some sort of medium on which, or through which, an object travels.

Coordinate Systems - Diagram

Figure I

In this example, Coordinate System I will be the stationary, or reference system, and Coordinate System 2 will be the moving coordinate system (at velocity v)

Complete Coordinate System

- In a Complete Coordinate System, the object that is oscillating between points in the moving system travels on, or through, a medium that is also in motion with regard to the moving system

Incomplete Coordinate System

- In an Incomplete Coordinate System, the object that is oscillating between points in the moving system travels on, or through, a medium that is in motion with regard to the stationary, or reference system

Coordinate System - Example

Figure 2

Note: Bus Driver \& Pedestrian, while not illustrated, are useful in understanding which system we are measuring against

Baseline Measurements

Figure 3a

Both dogs reach the front of the bus at the same time

- Bus is not moving
- Both dogs move at velocity w
- Distance from rear to front of bus is x '
- It takes time x^{\prime} / w to travel to the front of the bus

Baseline Measurements

Figure 3b

Both dogs reach the rear of the bus at the same time

- Bus is not moving
- Both dogs move at velocity w
- Distance from front to rear of bus is \times '
- It takes time x^{\prime} / w to travel to the rear of the bus
- The total time for one "oscillation" is $2 x$ '/w
- The total distance for one "oscillation" is $2 w x^{\prime} / w$ or simply $2 x$ '

Baseline Measurements Observations

- The total distance run for one "oscillation" is $2 x$ '
- One half of the total distance is x^{\prime}
- When the objects (e.g., dogs) have traveled a distance of x^{\prime}, they have reached the front of the bus
- While the dog will travel a total distance of $2 x$ ' per trip, its position in either coordinate system after traveling this distance is not $2 x^{\prime}$ from the origin because the dog has traveled in two directions
- Distance is the amount of time to make the journey multiplied by the velocity of the object (e.g., dog)
- Time is the distance of the journey divided by the velocity of the object (e.g., dog)

Complete Coordinate System Measurements

Figure 4a

Bus moves at velocity v Dog moves at velocity w Bus velocity is not constrained

- Time to travel between the rear to the front of the bus is x^{\prime} / w; and similarly for travel from the front to the rear
- When the dog reaches the front of the bus, the front of the bus is located at point x , where $\mathrm{x}=\mathrm{x}^{\prime}+\mathrm{v}\left(\mathrm{x}^{\prime} / \mathrm{w}\right)$, with respect to the ground.
- The dog has traveled a distance of x^{\prime} as determined by the medium that it is traveling on

Complete Coordinate System Measurements

- When the dog reaches the rear of the bus, the rear is located at point x, where $x=0+v\left(2 x^{\prime} / w\right)$, with respect to the ground
- The dog has traveled a distance of $2 x$ ' as determined by the medium that the dog is traveling on
- Note: In Fig. 4b, the position x is the result of an equation and can appear either to the left or to the right of x '

Complete Coordinate System Observations

- Bus is moving at velocity v
- The energy / effort (as measured by distance or time) of the object is determine by measurements in the moving system
- The position of the front of bus, with respect to the reference system is found as $x=x^{\prime}+v t$
- The position of the rear of the bus, with respect to the reference system is found as $x=v t$
- The object (e.g., dog) takes time x^{\prime} / w to travel in either direction
- The object (e.g., dog) travels a distance of x^{\prime} in either direction
- The total time for one "oscillation" is $2 x^{\prime} / w$
- The total distance for one "oscillation" is $2 w x$ '/w or $2 x$ '

Incomplete Coordinate System Measurements

- Time to travel between the rear to the front of the bus is $x^{\prime} /(\mathrm{w}-\mathrm{v})$
- When the dog reaches the front of the bus, the front of the bus is located at point x, where $x=x^{\prime}+v\left(x^{\prime} /(w-v)\right)$.
- To reach the front of the bus, the dog has traveled a distance of $w x^{\prime} /(w-v)$ as determined by the medium that it is traveling on (e.g., the street)
- The bus velocity must be less than w, or the dog will not make it to the front

Incomplete Coordinate System Measurements

- Time to travel between the front to the rear of the bus is $x^{\prime} /(\mathrm{w}+\mathrm{v})$
- When the dog reaches the rear of the bus, the front bus is located at point $x^{\prime}+v\left(x^{\prime} /(w-v)+x^{\prime} /(w+v)\right)$ and the rear is located at $v\left(x^{\prime} /(w-v)^{\prime}+x^{\prime} /(w+v)\right)$
- The dog has traveled a distance of $w x^{\prime} /(w+v)$ from the front of the bus to the rear of the bus, as determined by the medium that it is traveling on (e.g., the street)

Incomplete Coordinate System Observations

- Bus is moving at velocity v
- The energy / effort (as measured by distance or time) of the object is determine by measurements in the stationary system
- The object (e.g., dog) takes longer travel from the rear to the front than from the front to the rear
- The object (e.g., dog) travels a longer distance from the rear to the front, than from the front to the rear
- The moving coordinate system (e.g., bus) must travel slower than the object (e.g., dog) or the dog will not be able to oscillate

Equations - Incomplete Coordinate Systems

Approach I - Finding the equations for $1 / 2$ an oscillation

Description	Summary	Equation
Total Time - One Oscillation	Short Line Time + Long Line Time	$\frac{x^{\prime}}{w+v}+\frac{x^{\prime}}{w-v}$
Total Distance - One Oscillation	Short Line Distance + Long Line Distance	$w\left[\frac{x^{\prime}}{w+v}+\frac{x^{\prime}}{w-v}\right]$
$1 / 2$ Time of One Oscillation	[Short Line Time + Long Line Time] /2	$\tau=\left[\frac{x^{\prime}}{w+v}+\frac{x^{\prime}}{w-v}\right] / 2$
$1 / 2$ Distance of One Oscillation	[Short Line Distance + Long Line Distance] /2	$\xi=w\left[\frac{x^{\prime}}{w+v}+\frac{x^{\prime}}{w-v}\right] / 2$

Figure 6b
τ —— Tau is $1 / 2$ the time of one oscillation
$\xi-X i$ is $1 / 2$ the distance of one oscillation

Equations - Incomplete Coordinate Systems

	Summary	Time
Tail (Time)	Long Line Time - Short Line Time	$\frac{2 v x^{\prime}}{w^{2}-v^{2}}$
Tail (Distance)	Long Line Distance - Short Line Distance	$w\left[\frac{2 v x^{\prime}}{w^{2}-v^{2}}\right]$
$1 / 2$ Tail (Time)	$1 / 2$ of the Tail (time)	$\frac{v x^{\prime}}{w^{2}-v^{2}}$
$1 / 2$ Tail (Distance)	$1 / 2$ of the Tail (distance)	$w\left[\frac{v x^{\prime}}{w^{2}-v^{2}}\right]$

Approach II Finding the equations for $1 / 2$ an oscillation

Figure 7c

Description	Summary	Equation
$1 / 2$ Time of One Oscillation	[Long Line Time - $1 / 2$ Tail (Time)	$\left[\frac{x^{\prime}}{w-v}-\frac{v x^{\prime}}{w^{2}-v^{2}}\right]$
$1 / 2$ Distance of One Oscillation	[Long Line Distance - $1 / 2$ Tail (Distance)	$w\left[\frac{x^{\prime}}{w-v}-\frac{v x^{\prime}}{w^{2}-v^{2}}\right]$

- Einstein uses this approach to find Xi , which is simply the distance of $1 / 2$ an oscillation of an object in an Incomplete Coordinate System
- This is the Tau (Time) equation used in the model of Complete and Incomplete Coordinate Systems

Approach III Finding the equations for $1 / 2$ an oscillation

Description	Summary	Equation
$1 / 2$ Time of One Oscillation	[Short Line Time $+1 / 2$ Tail (Time)	$\left[\frac{x^{\prime}}{w+v}+\frac{v x^{\prime}}{w^{2}-v^{2}}\right]$
$1 / 2$ One Oscillation of	[Short Line Distance $+1 / 2$ Tail (Distance)	$w\left[\frac{x^{\prime}}{w+v}+\frac{v x^{\prime}}{w^{2}-v^{2}}\right]$

Equation Summary

Variable	Meaning	Simplified	Equivalent Equations
ξ	$1 / 2$ of the distance of one oscillation of an object in an Incomplete Coordinate System	$\left[\frac{x^{\prime}}{1-\frac{v^{2}}{w^{2}}}\right]$	$\begin{aligned} & =w\left[\frac{x^{\prime}}{w+v}+\frac{x^{\prime}}{w-v}\right] / 2 \\ & =w\left[\frac{x^{\prime}}{w-v}-\frac{v x^{\prime}}{w^{2}-v^{2}}\right] \\ & =w\left[\frac{x^{\prime}}{w+v}+\frac{v x^{\prime}}{w^{2}-v^{2}}\right] \end{aligned}$
τ	The amount of time required for the object to travel the distance represented by ξ	$\frac{1}{w}\left[\frac{x^{\prime}}{1-\frac{v^{2}}{w^{2}}}\right]$	$\begin{aligned} & =\left[\frac{x^{\prime}}{w+v}+\frac{x^{\prime}}{w-v}\right] / 2 \\ & =\left[\frac{x^{\prime}}{w-v}-\frac{v x^{\prime}}{w^{2}-v^{2}}\right] \\ & =\left[\frac{x^{\prime}}{w+v}+\frac{v x^{\prime}}{w^{2}-v^{2}}\right] \end{aligned}$

Summary

At the end of today's presentation, I hope that you are now able to do the following...
I. Explain the difference between Complete and Incomplete Coordinate Systems
2. Understand how to find the equations for $1 / 2$ and oscillation in a Complete and Incomplete Coordinate System
3. Explain the meaning of $\frac{v x^{\prime}}{w^{2}-v^{2}}$ and understand how it can be added to $\frac{x^{\prime}}{w+v}$, or subtracted from $\frac{x^{\prime}}{w+v}$ to find the equations for $1 / 2$ an oscillation (time) or when the time equation is multiplied by w , for $1 / 2$ an oscillation (distance)
4. If x^{\prime} is not known, but x and t are known instead, then x^{\prime} is found by using $x^{\prime}=x-v t$.

