RelativityChallenge.Com Podcast Episode 7

The equations of Complete and Incomplete Coordinate Systems

Originally recorded: September 27, 2007

Steven Bryant

0

email@RelativityChallenge.com www.RelativityChallenge.com blog.RelativityChallenge.com

Coordinate System Definition

• A basic **Coordinate System** is something that can be measured along one, two, or three dimensions

Characteristics

- I. One coordinate system can be put into motion with respect to another coordinate system
- 2. An object can be put into motion to travel between points in a coordinate system
- 3. There is some sort of medium on which, or through which, an object travels.

Coordinate Systems - Diagram

In this example, Coordinate System I will be the stationary, or reference system, and Coordinate System 2 will be the moving coordinate system (at velocity v)

Complete Coordinate System

 In a Complete Coordinate System, the object that is oscillating between points in the moving system travels on, or through, a medium that is also in motion with regard to the moving system

Incomplete Coordinate System

 In an Incomplete Coordinate System, the object that is oscillating between points in the moving system travels on, or through, a medium that is in motion with regard to the stationary, or reference system

Coordinate System - Example

Figure 2

Note: Bus Driver & Pedestrian, while not illustrated, are useful in understanding which system we are measuring against

Baseline Measurements

- Bus is not moving
- Both dogs move at velocity w
- Distance from rear to front of bus is x'
- It takes time x'/w to travel to the front of the bus

Baseline Measurements

- Bus is not moving
- Both dogs move at velocity w
- Distance from front to rear of bus is x'
- It takes time x'/w to travel to the rear of the bus
- The total time for one "oscillation" is 2x'/w
- The total distance for one "oscillation" is 2wx'/w or simply 2x'

Baseline Measurements -Observations

- The total distance run for one "oscillation" is 2x'
- One half of the total distance is x'
- When the objects (e.g., dogs) have traveled a distance of x', they have reached the front of the bus
- While the dog will travel a total distance of 2x' per trip, its position in either coordinate system after traveling this distance is not 2x' from the origin because the dog has traveled in two directions
- Distance is the amount of time to make the journey multiplied by the velocity of the object (e.g., dog)
- Time is the distance of the journey divided by the velocity of the object (e.g., dog)

Complete Coordinate System -Measurements

- Time to travel between the rear to the front of the bus is x'/w; and similarly for travel from the front to the rear
- When the dog reaches the front of the bus, the front of the bus is located at point x, where x = x' + v(x'/w), with respect to the ground.
- The dog has traveled a distance of x' as determined by the medium that it is traveling on

Complete Coordinate System -Measurements

x

- When the dog reaches the rear of the bus, the rear is located at point x, where x = 0 + v(2x'/w), with respect to the ground
- The dog has traveled a distance of 2x' as determined by the medium that the dog is traveling on
- Note: In Fig. 4b, the position x is the result of an equation and can appear either to the left or to the right of x'

Figure 4b

Bus moves at velocity v

Dog moves at velocity w

Bus velocity is not constrained

Complete Coordinate System -Observations

- Bus is moving at velocity v
- The energy / effort (as measured by distance or time) of the object is determine by measurements in the moving system
- The position of the front of bus, with respect to the reference system is found as x = x' + vt
- The position of the rear of the bus, with respect to the reference system is found as x = vt
- The object (e.g., dog) takes time x'/w to travel in either direction
- The object (e.g., dog) travels a distance of x' in either direction
- The total time for one "oscillation" is 2x'/w
- The total distance for one "oscillation" is 2wx'/w or 2x'

Incomplete Coordinate System -Measurements

- Time to travel between the rear to the front of the bus is x'/(w-v)
- When the dog reaches the front of the bus, the front of the bus is located at point x, where x = x' + v(x'/(w-v)).
- To reach the front of the bus, the dog has traveled a distance of wx'/(w-v) as determined by the medium that it is traveling on (e.g., the street)
- The bus velocity must be less than w, or the dog will not make it to the front

Incomplete Coordinate System -Measurements

- Time to travel between the front to the rear of the bus is x'/(w+v)
- When the dog reaches the rear of the bus, the front bus is located at point x' + v(x'/(w-v)+x'/(w+v)) and the rear is located at v(x'/(w-v)+x'/(w+v))
- The dog has traveled a distance of wx'/(w+v) from the front of the bus to the rear of the bus, as determined by the medium that it is traveling on (e.g., the street)

Incomplete Coordinate System -Observations

- Bus is moving at velocity v
- The energy / effort (as measured by distance or time) of the object is determine by measurements in the stationary system
- The object (e.g., dog) takes longer travel from the rear to the front than from the front to the rear
- The object (e.g., dog) travels a longer distance from the rear to the front, than from the front to the rear
- The moving coordinate system (e.g., bus) must travel slower than the object (e.g., dog) or the dog will not be able to oscillate

Equations – Incomplete Coordinate Systems

Line	Description	Time	Length
Long Line	The amount of time, or distance, for the oscillating object traveling on, or through, a medium associated with the reference system	$\frac{x'}{w-v}$	$w\left[\frac{x'}{w-v}\right]$
Short Line	The amount of time, or distance, for the oscillating object traveling on, or through, a medium associated with the reference system	$\frac{x'}{w+v}$	$w\left[\frac{x'}{w+v}\right]$

Approach I – Finding the equations for $\frac{1}{2}$ an oscillation

Description	Summary	Equation
Total Time – One Oscillation	Short Line Time + Long Line Time	$\frac{x'}{w+v} + \frac{x'}{w-v}$
Total Distance – One Oscillation	Short Line Distance + Long Line Distance	$w\left[\frac{x'}{w+v} + \frac{x'}{w-v}\right]$
¹ / ₂ Time of One Oscillation	[Short Line Time + Long Line Time] / 2	$\tau = \left[\frac{x'}{w+v} + \frac{x'}{w-v}\right]/2$
¹ / ₂ Distance of One Oscillation	[Short Line Distance + Long Line Distance] / 2	$\xi = w \left[\frac{x'}{w+v} + \frac{x'}{w-v} \right] / 2$

Figure 6b

au — Tau is ½ the time of one oscillation ξ — Xi is ½ the distance of one oscillation

© 2007 Steven Bryant & RelativityChallenge.com

Equations – Incomplete Coordinate Systems

	Summary	Time
Tail (Time)	Long Line Time – Short Line Time	$\frac{2vx'}{w^2 - v^2}$
Tail (Distance)	Long Line Distance – Short Line Distance	$w\left[\frac{2vx'}{w^2-v^2}\right]$
½ Tail (Time)	¹ ∕₂ of the Tail (time)	$\frac{vx'}{w^2 - v^2}$
¹∕₂ Tail (Distance)	$\frac{1}{2}$ of the Tail (distance)	$w\left[\frac{vx'}{w^2 - v^2}\right]$
nisode 7 - Sept 27 2007	© 2007 Steven Bryant & Relativity Challenge com	18

© 2007 Steven Bryant & RelativityChallenge.com

Approach II Finding the equations for $\frac{1}{2}$ an oscillation

Description	Summary	Equation
¹ / ₂ Time of One Oscillation	[Long Line Time - ½ Tail (Time)	$\left[\frac{x'}{w-v} - \frac{vx'}{w^2 - v^2}\right]$
¹ / ₂ Distance of One Oscillation	[Long Line Distance - ½ Tail (Distance)	$w\left[\frac{x'}{w-v} - \frac{vx'}{w^2 - v^2}\right]$

- Einstein uses this approach to find Xi, which is simply the distance of $\frac{1}{2}$ an oscillation of an object in an Incomplete Coordinate System
- This is the Tau (Time) equation used in the model of Complete and Incomplete Coordinate Systems
- Episode 7 Sept 27, 2007 © 2007 Steven Bryant & RelativityChallenge.com

Approach III Finding the equations for $\frac{1}{2}$ an oscillation

Description	Summary	Equation
¹ / ₂ Time of One Oscillation	[Short Line Time + ½ Tail (Time)	$\left[\frac{x'}{w+v} + \frac{vx'}{w^2 - v^2}\right]$
¹ / ₂ Distance of One Oscillation	[Short Line Distance + ½ Tail (Distance)	$w\left[\frac{x'}{w+v} + \frac{vx'}{w^2 - v^2}\right]$

Equation Summary

Summary

At the end of today's presentation, I hope that you are now able to do the following...

- I. Explain the difference between Complete and Incomplete Coordinate Systems
- 2. Understand how to find the equations for $\frac{1}{2}$ and oscillation in a Complete and Incomplete Coordinate System
- 3. Explain the meaning of $\frac{vx'}{w^2 v^2}$ and understand how it can be added to $\frac{x'}{w+v}$, or subtracted from $\frac{x'}{w+v}$ to find the equations for $\frac{1}{2}$ an oscillation (time) or when
 - the time equation is multiplied by w, for $\frac{1}{2}$ an oscillation (distance)
- 4. If x' is not known, but x and t are known instead, then x' is found by using x'=x-vt.