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The mathematical mistreatment of functions as algebraic equations results 

in errors that are impossible to detect without a thorough understanding of 

scope and namespaces.  Algebra defines what variables are, how they 

interact with other variables to form equations, and how multiple 

equations can be combined or solved as a system of equations.  Functions 

operate in a similar way, but introduce a new layer of complexity due to 

the abstraction that occurs by separating function definition from function 

invocation.  Here we show that functions are different from algebraic 

equations and that, under certain circumstances, their mistreatment as an 

algebraic equation will result in nearly impossible to detect mathematical 

errors.  Explaining these differences will require the introduction of scope 

and namespaces, which are cornerstone concepts in the proper treatment 

of functions.  Within this context, we explain the differences between 

optimization and simplification, and between invocation and substitution. 
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Introduction 

 

Algebra is one of the foundational subjects within mathematics.  It defines variables and 

introduces rules for using them in equations.  Functions are introduced in calculus and are 

often used synonymously as equations [1,2].  While functions are formally defined as a 

specific type of relation [3,4,5], mathematics does not provide sufficient detail around 

function syntax and operation to distinguish them from their algebraic counterparts.  This 
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can result in subtle, difficult to find, mathematical mistakes [6,7].  For example, consider 

the equation 

 

 7 . Eq. 1 23 ++= xxy

 

In calculus, one could describe this equation by saying "  is a function of y x ," leading 

one to rewrite the equation as the function 

 

 7 , Eq. 2 2)( 3 ++= xxxf

 

which they then treat as a substitute for Eq. 1.  The problem is that although Eq. 1 and 

Eq. 2 may look similar, they are not the same thing.  This point is illustrated by 

introducing the function definition 

 

 7 , Eq. 3 2)( 3 ++= aaaf

 

which is equivalent to Eq. 2.  Although Eq. 3 is equivalent to Eq. 2, many would 

conclude that Eq. 3 is not the same thing as Eq. 1 simply because it uses a different 

variable in the function body.  Since a function definition is simply a template, it must be 

invoked before it can be used.  Thus if Eq. 2, or equivalently, Eq. 3, is invoked as 

 

 )(xfy = , Eq. 4 

 

each function will produce the equation 

 

 7 . Eq. 5 23 ++= xxy

 

So, although Eq. 2 may look similar to Eq. 1, it would be premature to say it is the same 

thing as Eq. 1 based solely on the function definition.  Similarly, it is only after a specific 

function invocation that we are able to say that Eq. 3 yields the same thing as Eq. 1.  Only 
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after a function’s invocation are we able to determine if a function is equivalent to an 

algebraic equation.  Additionally, functions can be transformed into new equations in 

ways not possible with algebraic equations.  For example, if Eqs. 2 and 3 are invoked as 

, they produce )( 2xfy =

 

 7 . Eq. 6 2 26 ++= xxy

 

This equation cannot be produced from Eq. 1 since the required substitution, , is 

not always true.  These subtleties, which are often overlooked when dealing with 

functions, can result in extremely difficult to locate mathematical mistakes.   

2xx =

 

This paper explains the distinguishing characteristics between functions and equations, as 

well as identifies problems that can occur when functions are mistreated as equations.  

Specifically, it will discuss the differences between an algebraic equation and a function 

definition, and between algebraic substitution and function invocation.  These differences 

will require us to introduce the concepts of scope and namespaces. 

 

Function Definitions 

 

When an algebraic equation is defined, it is immediately ready for use, as long as values 

can be found for each of the named variables.  This is not true with functions.  A function 

definition is essentially a template that does not take on the final form of an equation until 

after invocation.  For example, if an equation is written as 

 

 bay += 2 , Eq. 7 

 

we can find the result, y , as long as we can determine values for a  and b .  Thus, the 

equation is ready to be solved or to take part in a system of equations.  Functions, on the 

other hand, make a distinction between their definition and their usage.  Consider the 

following four functions, 
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 { }baf += 2()  Eq. 8 

 { }baaf += 2)(  Eq. 9 

 { }babf += 2)(  Eq. 10 

 { }babaf += 2),( . Eq. 11 

 

Each function is different and uses the { } notation to show that each is a function 

definition, distinguishing them from an algebraic equation, or from an invoked function.  

Like Eq. 7, each function definition contains ba +2  in the function body.  As will be 

explained shortly, only the function definition given in Eq. 8 will produce the same 

equation as given in Eq. 7 for every invocation of the function.  The remaining functions 

can produce different equations than Eq. 7, depending upon the argument(s) passed to the 

function during invocation. 

 

Structurally, a function definition has three parts; the function name (e.g., ), the 

function body (e.g., the part between the 

f

{ }), and the function signature, which is the 

function name and any variables used as parameters by the function (e.g., 

).  Variables in the function signature are called parameters, or 

local variables.  They are “placeholders” that must be resolved before the function can be 

evaluated.  Local variables introduce a new level of abstraction, beyond that which is 

available in algebra, due to the concept of namespace. 

),(),(),((), bafbfaff

 

Scope and Namespaces 

 

In algebra, all variables exist within the same namespace, the global namespace.  In other 

words, algebra makes no distinction between a global and a local variable.  Because 

algebra simply uses one type of variable, the concepts of scope and namespace can be 

safely ignored and are generally overlooked.  These concepts cannot be ignored when 

working with functions. 
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A namespace is the name given to describe where any particular variable is valid (also 

known as its scope) [8,9,10].  Variables defined outside of a function exist in the global 

namespace and use the notation .  Because there is no name prior to the 

 symbol, these variables can be used anyplace, unless they are overridden by a locally 

scoped variable of the same name.  Global variables are said to have universal scope. 

ableglobalVari::

::

 

Assuming a non-nested function, the namespace notation for a local parameter is 

.  Variables that begin with  are only 

visible and can only be used within that function.  Because they can only be used within 

the function, local variables are said to have limited scope.  When a local variable is 

defined, it will hide any variables of the same name from a higher scope (e.g., global 

variables) until after the function has been invoked.  In other words, locally scoped 

variables will always take precedence in a function definition. 

blelocalVariamefunctionNa :: ::mefunctionNa

 

The simple act of defining a function creates “local variables” if that function has one or 

more variables in the function signature.  Because a local variable only exists within the 

namespace of the function and is essentially a placeholder, it can be replaced by any other 

local parameter, producing an equivalent function.  Thus, { }bccf += 2)(  is equivalent to 

Eq. 9 and could be used in its place without error.  In namespace notation, this is written 

as .  Prior to invocation, a function may be composed of local and 

global variables.  Following invocation, a function will no longer contain any variables 

local to that function.  

{ bcfcf ::::*2)( += }

 

Care must be taken to prevent simplifying a local variable with a global variable of the 

same name.  These are called overloaded variables and must be treated distinctly from 

one another in order to prevent very difficult to find mistakes.  Such incorrect 

simplification, as will be shown shortly, can be nearly impossible to detect without 

formal namespace notation. 
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Abstraction – Function Invocation 

 

Invocation is the act of replacing a local placeholder variable with the value, equation, 

variable, or function that is passed as an argument.  This is an act of variable replacement 

between different namespaces.  This differs from algebraic substitution which performs 

all of its operations within one namespace.  The number of formal arguments used when 

the function is invoked must match the number of parameters given when the function 

was defined.   

 

An invocation occurs when the function is given arguments.  Typically, function 

invocations appear as part of statements on the right-hand side on the equals sign.  For 

example, given  and b  are both 0 , consider the function invocation a

 

 )3(fy = . Eq. 12 

 

If this is the invocation for Eq. 9, then the resulting equation is  

 

 by += )3(2   or  6=y . Eq. 13 

 

However, if this is the invocation for Eq. 10, then the resulting equation is 

 

 32 += ay   or  3=y . Eq. 14 

 

Thus, when a function is defined, it is not ready for use.  It must be invoked.  If  and 

, consider the confusion if Eq. 11 is incorrectly used before it was properly 

invoked as 

1=a

10=b

 

 abybecomeswhichabfy +== 2),( . Eq.15 

 

This is not equivalent to Eq. 7, nor does it look like the function definition in Eq. 11.  

Notice that even when values for  and b  are known, the function bodies in Eqs. 9, 10, a
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and 11 generally will not produce a correct result prior to invocation.  This separation 

between function definition and invocation is a subtle, yet significant, distinction between 

algebraic equations and functions. 

 

As a result of the separation of function definition from invocation, there are four 

transformational activities that can be performed on functions; optimization, invocation, 

substitution, and simplification.  However, only two of them, substitution and 

simplification, are performed on algebraic equations. 

 

Optimization is the act of simplifying a function before its invocation.  Proper 

optimization takes into account the namespaces of the variables within the function body 

to ensure that local variables are not incorrectly simplified with global variables of the 

same name.  Since optimization considers variables in more than one namespace, this 

activity is not performed on algebraic equations. 

 

Invocation is a required activity when using a function.  Invocation maps arguments into 

the local parameters of the function.  This mapping of arguments (from a higher-scoped 

namespace) to parameters (of the local namespace) is unique to function invocations and 

does not occur with algebraic equations. 

 

Substitution is similar to invocation in that variables are replaced with literals, global 

variables, or other equations.  With substitution, all of the replacements occur within the 

same namespace.  This is a key differentiator between substitution and invocation. 

 

Simplification is similar to optimization.  It can occur with equations, or with functions 

after invocation.  The key difference between substitution and optimization is that 

simplification is performed on variables within the same namespace; most typically the 

global namespace. 
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Function Syntax 

 

One of the reasons that functions are mistreated as algebraic equations is because they are 

often written so that they look like equations.  This makes it hard to know when the 

activities of functions (e.g., optimization, invocation, substitution, and simplification) 

apply as opposed to the activities of algebra (e.g., substitution and simplification).  In 

order to avoid problems, functions should adhere to a formal style for both definition and 

invocation. 

 

Some familiarity of syntax notation is assumed.  The symbol  is read as “is a.”  

Optional items are enclosed in brackets [].  The symbol ‘|’ is used to denote a choice 

between two or more alternatives.   is a reserved word and should not be used as a 

variable name.  The rule that defines a valid function definition is given by the following 

specification: 

→

void

 

blelocalVariaathnamespacePTypeeterlocalParam
eterlocalParameterlocalParameterslocalParameterslocalParam

voideterslocalParamistparameterL
atementfunctionStatementfunctionStdyfunctionBo

istparameterLmefunctionNamefunctionNagnaturefunctionSi
dyfunctionBognaturefunctionSiTypefinitionfunctionDe

opt

opt

::][][
|,

||
|}{][

)(|
][

→
→

→
==→

→
→

ε
 

 

It may not always be convenient to show a function definition with all of its parameters.  

In such cases, the “…” notation should be used, such as .  This will distinguish a 

function that will take arguments during invocation from those that will not. 

(...)f

 

Use of  is discouraged since it can lead to confusion 

and the potential mistreatment of a function as an algebraic variable.  Use of the {  

notation is recommended when defining functions in order to better distinguish them 

from algebraic equations.  This will also serve as a reminder that the function must be 

invoked before it is used. 

mefunctionNagnaturefunctionSi →

}
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The rule that defines a valid function invocation is defined by the following specification 

 

mentformalArgumentformalArgumentsformalArgumentsformalArgu

voidmentsformalArgumentsListformalArgu

mentsListformalArgumefunctionNamefunctionNavocationfunctionIn

opt

opt

|,

||

)(|

→

→

→

ε  

 

When invoking a function that takes no arguments, it is better to show the function 

invocation as or , rather than as .  This will help prevent the mistreatment 

of the function as an algebraic variable. 

()f )(voidf f

 

One should avoid using a function definition and a function invocation as part of the 

same statement (e.g., 72)( +== xxfy ).  This combining of definition with invocation 

can result in namespace confusion between global and local variables and may produce 

difficult to locate errors. 

 

While these specifications are sufficient to cover most functions definitions and 

invocations one may encounter in mathematics, it should not be taken as a complete 

language specification for all functions.  In some domains, such as Computer Science, 

such language specifications undergo many revisions and are ultimately standardized 

through a recognized governing body such as IEEE or ANSI.  I recommend that any 

language specification for function usage in mathematics undergo a similar process. 

 

Nuances of Function Use 

 

The following example will illustrate the nuances between a system of algebraic 

equations and a system that consists of an algebraic equation and a function.  Consider 

the following two algebraic statements, 
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 vtxx −='  Eq. 16 

 

 ) . Eq. 17 /(' 22 vcvxtT −−=

 

T  can be expressed in terms of x  and  by substituting for  in Eq. 17 with Eq. 16.  In 

this case, v  and c  are treated as givens, or constants.  This produces 

t 'x

 

 ) , Eq.18 /()( 22 vcvtxvtT −−−=

 

which can be further simplified as  

 

  Eq. 19 )/1/()/( 222 cvcvxtT −−=

 

by canceling the  terms resulting from rewriting Eq. 18.  As a second example, we 

can introduce the function T  that uses no parameters.  The function , or , is 

defined as 

tv 2

)(voidT ()T

 

 { })/('() 22 vcvxtT −−=  Eq. 20 

 

and is optimized as the function 

 

 { })/1/()/(() 222 cvcvxtT −−= . Eq. 21 

 

In this case, each of the variables involved in the function is a global variable.  While the 

function should still be thought of as requiring an invocation, in reality, the function body 

remains the same after invocation since there are no local variables to be replaced.  

However, care must be taken if the function is defined with local parameters, especially if 

those parameters share the same variable name as a global variable. As a third example, 

consider a function  that is defined using the local variable t .  Notice what happens 

if we optimize this function as we did in the previous two examples.  We begin with 

(...)T
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 { })/(')( 22 vcvxttT −−= . Eq. 22 

 

Since  is a global variable in the function, we replace it with Eq. 16 to produce 'x

 

 { })/()()( 22 vcvtxvttT −−−= , Eq. 23 

 

which is now ambiguous and misleading because it is not readily apparent that the two t  

variables in the equation are, in fact, different variables.  Without careful identification 

of the global and local variables, as can be performed using namespace notation, as in 

 

 { })::(::/)::*::(::::::)( 22 vctvxvtTtT −−−=  Eq. 24 

 

one would incorrectly simplify Eq. 23 to produce  

 

 { })/1/()/()( 222 cvcvxttT −−= . Eq. 25 

 

I must emphasize that Eq. 25 is incorrect since it involved the cancelation of a term 

containing the local placeholder variable  with a term containing the global 

variable .  The  variables are different because they are in different namespaces. 

tT ::

t:: t

 

As a final example, reconsider Eq. 11, which when invoked as ),( abfy =  yields 

.  Producing this equation from Eq. 7 using algebraic substitution would be 

impossible without first introducing a third, temporary, variable.  However, 

understanding why this invocation works the way it does, without error, is illustrated 

using namespace notation.  Using this notation, the function is defined as 

aby += 2

 

 { }bfafbaf ::::*2),( += , Eq. 26 
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highlighting the use of two local placeholder variables in the function.  When the 

function is invoked as  

 

 ),( abfy = , Eq. 27 

 

it uses variables from the global namespace as arguments.  This is made more apparent 

by showing the invocation using namespace notation as 

 

 )::,(:: abfy = . Eq. 28 

 

Thus after invocation, the resulting equation, when written in namespace terminology is 

 

 aby ::::*2 += . Eq. 29 

 

This example illustrates how Eq. 29 is produced and how namespace notation 

differentiates functions (which can use variables from multiple namespaces) from 

algebraic equations (which typically work only with variables within the global 

namespace).  The reader is asked to rewrite Eqs. 8 through 10 in namespace notation to 

better understand the differences between each. 

 

These examples have illustrated nuances that must be considered when dealing with 

functions in order to prevent mistakes that one would not realized were there if assessed 

solely from an algebraic perspective [6,7]. 

 

Conclusion 

 

Functions differ from their algebraic counterpart with regard to scope and namespaces.  

Variables in algebraic equations exist in the global namespace.  For this reason, concepts 

such as scope and namespaces can be safely ignored when dealing solely with algebraic 

equations.  However, any function that is defined with a local variable in the function’s 

signature automatically creates a new namespace.  This means that functions can use 
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local variables, global variables, or both.  This distinction is critical to understanding the 

proper operation of functions since functions may have overloaded variables (e.g., 

variables of the same name in multiple namespaces). 

 

Unlike algebraic equations, functions consist of two actions; definition and invocation.  

As a result, functions can have four transformational activities performed on them; 

optimization, invocation (which is required), substitution, and simplification.  Algebraic 

equations, on the other hand, only have two activities; substitution and simplification.  

While functions can be treated as equations, often without problem, there are differences 

between algebraic equations and functions that can lead to difficult (or impossible) to 

detect mathematical errors.  Without an understanding of the differences between 

functions and algebraic equations, extremely subtle mathematical errors will go 

undetected. 
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