
The Significance of Distinguishing Functions from Algebraic Equations

Steven Bryant
Avitel Corporation / RelativityChallenge.com

www.RelativityChallenge.com
Steven.Bryant.Email@RelativityChallenge.com

The mathematical mistreatment of functions as algebraic equations results

in errors that are impossible to detect without a thorough understanding of

scope and namespaces. Algebra defines what variables are, how they

interact with other variables to form equations, and how multiple

equations can be combined or solved as a system of equations. Functions

operate in a similar way, but introduce a new layer of complexity due to

the abstraction that occurs by separating function definition from function

invocation. Here we show that functions are different from algebraic

equations and that, under certain circumstances, their mistreatment as an

algebraic equation will result in nearly impossible to detect mathematical

errors. Explaining these differences will require the introduction of scope

and namespaces, which are cornerstone concepts in the proper treatment

of functions. Within this context, we explain the differences between

optimization and simplification, and between invocation and substitution.

Keywords: Functions, Function Syntax, Namespaces, Scope

Introduction

Algebra is one of the foundational subjects within mathematics. It defines variables and

introduces rules for using them in equations. Functions are introduced in calculus and are

often used synonymously as equations [1,2]. While functions are formally defined as a

specific type of relation [3,4,5], mathematics does not provide sufficient detail around

function syntax and operation to distinguish them from their algebraic counterparts. This

 The Significance of Distinguishing Functions from Algebraic Equations

can result in subtle, difficult to find, mathematical mistakes [6,7]. For example, consider

the equation

 7 . Eq. 1 23 ++= xxy

In calculus, one could describe this equation by saying " is a function of y x ," leading

one to rewrite the equation as the function

 7 , Eq. 2 2)(3 ++= xxxf

which they then treat as a substitute for Eq. 1. The problem is that although Eq. 1 and

Eq. 2 may look similar, they are not the same thing. This point is illustrated by

introducing the function definition

 7 , Eq. 3 2)(3 ++= aaaf

which is equivalent to Eq. 2. Although Eq. 3 is equivalent to Eq. 2, many would

conclude that Eq. 3 is not the same thing as Eq. 1 simply because it uses a different

variable in the function body. Since a function definition is simply a template, it must be

invoked before it can be used. Thus if Eq. 2, or equivalently, Eq. 3, is invoked as

)(xfy = , Eq. 4

each function will produce the equation

 7 . Eq. 5 23 ++= xxy

So, although Eq. 2 may look similar to Eq. 1, it would be premature to say it is the same

thing as Eq. 1 based solely on the function definition. Similarly, it is only after a specific

function invocation that we are able to say that Eq. 3 yields the same thing as Eq. 1. Only

©2009 By Steven Bryant Page 2

 The Significance of Distinguishing Functions from Algebraic Equations

after a function’s invocation are we able to determine if a function is equivalent to an

algebraic equation. Additionally, functions can be transformed into new equations in

ways not possible with algebraic equations. For example, if Eqs. 2 and 3 are invoked as

, they produce)(2xfy =

 7 . Eq. 6 2 26 ++= xxy

This equation cannot be produced from Eq. 1 since the required substitution, , is

not always true. These subtleties, which are often overlooked when dealing with

functions, can result in extremely difficult to locate mathematical mistakes.

2xx =

This paper explains the distinguishing characteristics between functions and equations, as

well as identifies problems that can occur when functions are mistreated as equations.

Specifically, it will discuss the differences between an algebraic equation and a function

definition, and between algebraic substitution and function invocation. These differences

will require us to introduce the concepts of scope and namespaces.

Function Definitions

When an algebraic equation is defined, it is immediately ready for use, as long as values

can be found for each of the named variables. This is not true with functions. A function

definition is essentially a template that does not take on the final form of an equation until

after invocation. For example, if an equation is written as

 bay += 2 , Eq. 7

we can find the result, y , as long as we can determine values for a and b . Thus, the

equation is ready to be solved or to take part in a system of equations. Functions, on the

other hand, make a distinction between their definition and their usage. Consider the

following four functions,

©2009 By Steven Bryant Page 3

 The Significance of Distinguishing Functions from Algebraic Equations

 { }baf += 2() Eq. 8

 { }baaf += 2)(Eq. 9

 { }babf += 2)(Eq. 10

 { }babaf += 2),(. Eq. 11

Each function is different and uses the { } notation to show that each is a function

definition, distinguishing them from an algebraic equation, or from an invoked function.

Like Eq. 7, each function definition contains ba +2 in the function body. As will be

explained shortly, only the function definition given in Eq. 8 will produce the same

equation as given in Eq. 7 for every invocation of the function. The remaining functions

can produce different equations than Eq. 7, depending upon the argument(s) passed to the

function during invocation.

Structurally, a function definition has three parts; the function name (e.g.,), the

function body (e.g., the part between the

f

{ }), and the function signature, which is the

function name and any variables used as parameters by the function (e.g.,

). Variables in the function signature are called parameters, or

local variables. They are “placeholders” that must be resolved before the function can be

evaluated. Local variables introduce a new level of abstraction, beyond that which is

available in algebra, due to the concept of namespace.

),(),(),((), bafbfaff

Scope and Namespaces

In algebra, all variables exist within the same namespace, the global namespace. In other

words, algebra makes no distinction between a global and a local variable. Because

algebra simply uses one type of variable, the concepts of scope and namespace can be

safely ignored and are generally overlooked. These concepts cannot be ignored when

working with functions.

©2009 By Steven Bryant Page 4

 The Significance of Distinguishing Functions from Algebraic Equations

A namespace is the name given to describe where any particular variable is valid (also

known as its scope) [8,9,10]. Variables defined outside of a function exist in the global

namespace and use the notation . Because there is no name prior to the

 symbol, these variables can be used anyplace, unless they are overridden by a locally

scoped variable of the same name. Global variables are said to have universal scope.

ableglobalVari::

::

Assuming a non-nested function, the namespace notation for a local parameter is

. Variables that begin with are only

visible and can only be used within that function. Because they can only be used within

the function, local variables are said to have limited scope. When a local variable is

defined, it will hide any variables of the same name from a higher scope (e.g., global

variables) until after the function has been invoked. In other words, locally scoped

variables will always take precedence in a function definition.

blelocalVariamefunctionNa :: ::mefunctionNa

The simple act of defining a function creates “local variables” if that function has one or

more variables in the function signature. Because a local variable only exists within the

namespace of the function and is essentially a placeholder, it can be replaced by any other

local parameter, producing an equivalent function. Thus, { }bccf += 2)(is equivalent to

Eq. 9 and could be used in its place without error. In namespace notation, this is written

as . Prior to invocation, a function may be composed of local and

global variables. Following invocation, a function will no longer contain any variables

local to that function.

{ bcfcf ::::*2)(+= }

Care must be taken to prevent simplifying a local variable with a global variable of the

same name. These are called overloaded variables and must be treated distinctly from

one another in order to prevent very difficult to find mistakes. Such incorrect

simplification, as will be shown shortly, can be nearly impossible to detect without

formal namespace notation.

©2009 By Steven Bryant Page 5

 The Significance of Distinguishing Functions from Algebraic Equations

Abstraction – Function Invocation

Invocation is the act of replacing a local placeholder variable with the value, equation,

variable, or function that is passed as an argument. This is an act of variable replacement

between different namespaces. This differs from algebraic substitution which performs

all of its operations within one namespace. The number of formal arguments used when

the function is invoked must match the number of parameters given when the function

was defined.

An invocation occurs when the function is given arguments. Typically, function

invocations appear as part of statements on the right-hand side on the equals sign. For

example, given and b are both 0 , consider the function invocation a

)3(fy = . Eq. 12

If this is the invocation for Eq. 9, then the resulting equation is

 by +=)3(2 or 6=y . Eq. 13

However, if this is the invocation for Eq. 10, then the resulting equation is

 32 += ay or 3=y . Eq. 14

Thus, when a function is defined, it is not ready for use. It must be invoked. If and

, consider the confusion if Eq. 11 is incorrectly used before it was properly

invoked as

1=a

10=b

 abybecomeswhichabfy +== 2),(. Eq.15

This is not equivalent to Eq. 7, nor does it look like the function definition in Eq. 11.

Notice that even when values for and b are known, the function bodies in Eqs. 9, 10, a

©2009 By Steven Bryant Page 6

 The Significance of Distinguishing Functions from Algebraic Equations

and 11 generally will not produce a correct result prior to invocation. This separation

between function definition and invocation is a subtle, yet significant, distinction between

algebraic equations and functions.

As a result of the separation of function definition from invocation, there are four

transformational activities that can be performed on functions; optimization, invocation,

substitution, and simplification. However, only two of them, substitution and

simplification, are performed on algebraic equations.

Optimization is the act of simplifying a function before its invocation. Proper

optimization takes into account the namespaces of the variables within the function body

to ensure that local variables are not incorrectly simplified with global variables of the

same name. Since optimization considers variables in more than one namespace, this

activity is not performed on algebraic equations.

Invocation is a required activity when using a function. Invocation maps arguments into

the local parameters of the function. This mapping of arguments (from a higher-scoped

namespace) to parameters (of the local namespace) is unique to function invocations and

does not occur with algebraic equations.

Substitution is similar to invocation in that variables are replaced with literals, global

variables, or other equations. With substitution, all of the replacements occur within the

same namespace. This is a key differentiator between substitution and invocation.

Simplification is similar to optimization. It can occur with equations, or with functions

after invocation. The key difference between substitution and optimization is that

simplification is performed on variables within the same namespace; most typically the

global namespace.

©2009 By Steven Bryant Page 7

 The Significance of Distinguishing Functions from Algebraic Equations

Function Syntax

One of the reasons that functions are mistreated as algebraic equations is because they are

often written so that they look like equations. This makes it hard to know when the

activities of functions (e.g., optimization, invocation, substitution, and simplification)

apply as opposed to the activities of algebra (e.g., substitution and simplification). In

order to avoid problems, functions should adhere to a formal style for both definition and

invocation.

Some familiarity of syntax notation is assumed. The symbol is read as “is a.”

Optional items are enclosed in brackets []. The symbol ‘|’ is used to denote a choice

between two or more alternatives. is a reserved word and should not be used as a

variable name. The rule that defines a valid function definition is given by the following

specification:

→

void

blelocalVariaathnamespacePTypeeterlocalParam
eterlocalParameterlocalParameterslocalParameterslocalParam

voideterslocalParamistparameterL
atementfunctionStatementfunctionStdyfunctionBo

istparameterLmefunctionNamefunctionNagnaturefunctionSi
dyfunctionBognaturefunctionSiTypefinitionfunctionDe

opt

opt

::][][
|,

||
|}{][

)(|
][

→
→

→
==→

→
→

ε

It may not always be convenient to show a function definition with all of its parameters.

In such cases, the “…” notation should be used, such as . This will distinguish a

function that will take arguments during invocation from those that will not.

(...)f

Use of is discouraged since it can lead to confusion

and the potential mistreatment of a function as an algebraic variable. Use of the {

notation is recommended when defining functions in order to better distinguish them

from algebraic equations. This will also serve as a reminder that the function must be

invoked before it is used.

mefunctionNagnaturefunctionSi →

}

©2009 By Steven Bryant Page 8

 The Significance of Distinguishing Functions from Algebraic Equations

The rule that defines a valid function invocation is defined by the following specification

mentformalArgumentformalArgumentsformalArgumentsformalArgu

voidmentsformalArgumentsListformalArgu

mentsListformalArgumefunctionNamefunctionNavocationfunctionIn

opt

opt

|,

||

)(|

→

→

→

ε

When invoking a function that takes no arguments, it is better to show the function

invocation as or , rather than as . This will help prevent the mistreatment

of the function as an algebraic variable.

()f)(voidf f

One should avoid using a function definition and a function invocation as part of the

same statement (e.g., 72)(+== xxfy). This combining of definition with invocation

can result in namespace confusion between global and local variables and may produce

difficult to locate errors.

While these specifications are sufficient to cover most functions definitions and

invocations one may encounter in mathematics, it should not be taken as a complete

language specification for all functions. In some domains, such as Computer Science,

such language specifications undergo many revisions and are ultimately standardized

through a recognized governing body such as IEEE or ANSI. I recommend that any

language specification for function usage in mathematics undergo a similar process.

Nuances of Function Use

The following example will illustrate the nuances between a system of algebraic

equations and a system that consists of an algebraic equation and a function. Consider

the following two algebraic statements,

©2009 By Steven Bryant Page 9

 The Significance of Distinguishing Functions from Algebraic Equations

 vtxx −=' Eq. 16

) . Eq. 17 /(' 22 vcvxtT −−=

T can be expressed in terms of x and by substituting for in Eq. 17 with Eq. 16. In

this case, v and c are treated as givens, or constants. This produces

t 'x

) , Eq.18 /()(22 vcvtxvtT −−−=

which can be further simplified as

 Eq. 19)/1/()/(222 cvcvxtT −−=

by canceling the terms resulting from rewriting Eq. 18. As a second example, we

can introduce the function T that uses no parameters. The function , or , is

defined as

tv 2

)(voidT ()T

 { })/('() 22 vcvxtT −−= Eq. 20

and is optimized as the function

 { })/1/()/(() 222 cvcvxtT −−= . Eq. 21

In this case, each of the variables involved in the function is a global variable. While the

function should still be thought of as requiring an invocation, in reality, the function body

remains the same after invocation since there are no local variables to be replaced.

However, care must be taken if the function is defined with local parameters, especially if

those parameters share the same variable name as a global variable. As a third example,

consider a function that is defined using the local variable t . Notice what happens

if we optimize this function as we did in the previous two examples. We begin with

(...)T

©2009 By Steven Bryant Page 10

 The Significance of Distinguishing Functions from Algebraic Equations

 { })/(')(22 vcvxttT −−= . Eq. 22

Since is a global variable in the function, we replace it with Eq. 16 to produce 'x

 { })/()()(22 vcvtxvttT −−−= , Eq. 23

which is now ambiguous and misleading because it is not readily apparent that the two t

variables in the equation are, in fact, different variables. Without careful identification

of the global and local variables, as can be performed using namespace notation, as in

 { })::(::/)::*::(::::::)(22 vctvxvtTtT −−−= Eq. 24

one would incorrectly simplify Eq. 23 to produce

 { })/1/()/()(222 cvcvxttT −−= . Eq. 25

I must emphasize that Eq. 25 is incorrect since it involved the cancelation of a term

containing the local placeholder variable with a term containing the global

variable . The variables are different because they are in different namespaces.

tT ::

t:: t

As a final example, reconsider Eq. 11, which when invoked as),(abfy = yields

. Producing this equation from Eq. 7 using algebraic substitution would be

impossible without first introducing a third, temporary, variable. However,

understanding why this invocation works the way it does, without error, is illustrated

using namespace notation. Using this notation, the function is defined as

aby += 2

 { }bfafbaf ::::*2),(+= , Eq. 26

©2009 By Steven Bryant Page 11

 The Significance of Distinguishing Functions from Algebraic Equations

highlighting the use of two local placeholder variables in the function. When the

function is invoked as

),(abfy = , Eq. 27

it uses variables from the global namespace as arguments. This is made more apparent

by showing the invocation using namespace notation as

)::,(:: abfy = . Eq. 28

Thus after invocation, the resulting equation, when written in namespace terminology is

 aby ::::*2 += . Eq. 29

This example illustrates how Eq. 29 is produced and how namespace notation

differentiates functions (which can use variables from multiple namespaces) from

algebraic equations (which typically work only with variables within the global

namespace). The reader is asked to rewrite Eqs. 8 through 10 in namespace notation to

better understand the differences between each.

These examples have illustrated nuances that must be considered when dealing with

functions in order to prevent mistakes that one would not realized were there if assessed

solely from an algebraic perspective [6,7].

Conclusion

Functions differ from their algebraic counterpart with regard to scope and namespaces.

Variables in algebraic equations exist in the global namespace. For this reason, concepts

such as scope and namespaces can be safely ignored when dealing solely with algebraic

equations. However, any function that is defined with a local variable in the function’s

signature automatically creates a new namespace. This means that functions can use

©2009 By Steven Bryant Page 12

 The Significance of Distinguishing Functions from Algebraic Equations

local variables, global variables, or both. This distinction is critical to understanding the

proper operation of functions since functions may have overloaded variables (e.g.,

variables of the same name in multiple namespaces).

Unlike algebraic equations, functions consist of two actions; definition and invocation.

As a result, functions can have four transformational activities performed on them;

optimization, invocation (which is required), substitution, and simplification. Algebraic

equations, on the other hand, only have two activities; substitution and simplification.

While functions can be treated as equations, often without problem, there are differences

between algebraic equations and functions that can lead to difficult (or impossible) to

detect mathematical errors. Without an understanding of the differences between

functions and algebraic equations, extremely subtle mathematical errors will go

undetected.

References

[1] E. Swokowski, “Calculus with Analytic Geometry”, Alternate Edition, PWS

Publishers, (1983)

[2] J. Stewart, “Calculus – Early Transcendentals”, 6th edition, Brook/Cole – Thompson

Learning, (2008)

[3] E. Block, “Proofs and Fundamentals – A First Course in Abstract Mathematics”,

Birkhauser, (2003)

[4] J. Tremblay and R. Manohar, “Discrete Mathematical Structures with Applications to

Computer Science”, McGraw-Hill, (1975)

[5] J. Matousek and J. Nesetril, “Invitation to Discrete Mathematics”, 2nd Edition,

Oxford University Press, (2008)

[6] S. Bryant, “Mistake Identification – Function Method (Advance Method)”, (2009),

Page posting available at www.RelativityChallenge.com

[7] S. Bryant, “A Brute-Force Mathematical Challenge to Special Relativity”, 14th

Annual NPA 2007 Conference Proceedings, University of Connecticut, (2008), Available

at www.RelativityChallenge.com

©2009 By Steven Bryant Page 13

 The Significance of Distinguishing Functions from Algebraic Equations

[8] A. Aho, M. Lam, R.Sethi, “Compilers, Principles, Techniques, & Tools”, 2nd

edition, Addison Wesley, (2006)

[9] B. Stroustrup, “The C++ Programming Language”, 3rd edition, Addison Wesley,

(1997)

[10] R. Lischner, “C++ In A Nutshell”, 1st edition, O’Reilly, (2003)

©2009 By Steven Bryant Page 14

