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Einstein’s Special Relativity transformation equations are the foundation of the modern 

understanding of space and time.  These equations are believed to be mathematically 

consistent.  Here we find that the commonly accepted Special Relativity equations are not 

mathematically consistent and were created using steps that include subtle, yet 

significantly important, mathematical errors.  Because these findings are mathematical in 

nature, they can be confirmed independently and are not dependent on any physics 

terminology associated with Special Relativity.  This discovery, and the required 

correction, has implications on the predictive characteristics of the equations as well as 

on our theoretical understanding of space and time. 
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1.  Introduction 

 

Einstein’s Theory of Special Relativity1 (SR) reconciled the relationship between a 

moving body and the behavior of light.  SR also introduced several paradoxes, the most 

prominent of which are length contraction and time dilation.2  Challengers to SR often 

site logical contradictions in one of the paradoxes.  However, since the SR community 

has already established the meaning of the terms and have explained the paradoxes, such 

challenges are met with resistance.3,4,5,6  Furthermore, recent attempts7,8,9 to challenge or 

redefine SR have not first identified the root cause of the problem with SR. 

 

This paper differs from previous challenges in that it does not rely on paradoxes nor does 

it first redefine the commonly accepted meaning or interpretation of the equations or 

variables.  It simply presents the mathematical inconsistencies in each of Einstein’s 

derivations of the SR equations.  Many theoretical challengers of SR accept the equations 

as mathematically correct and have not pursued this path.10,11  The advantage of a 

mathematical approach is that it is objectively measurable.  Mathematical conclusions are 

not based on what terms mean; they are based on the adherence to certain mathematical 

rules.  Either the rules are followed or they are not. 

 

If the findings of mathematical errors in Einstein’s derivations are found to be correct, SR 

cannot be subsequently supported on the basis of experimental results. Experimental 

results can only separate theories into two classes; those that are consistent with the 

results and those that are not.  Importantly, experimental results cannot be used as proof 
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of a mathematically inconsistent theory.  An alternative theory, which is mathematically 

correct and remains consistent with the results, must be found. 

 

2.  Revisiting Einstein’s SR Transformation Derivations 

 

We begin by illustrating mathematical problems in Einstein’s 1905 and 1912 derivations 

of the SR equations.  We will then identify the cause of the problem in his 1905 

derivation and correct the equations. 

 

The problem with Einstein's 1905 derivation 

 

This section establishes the mathematical rules used to evaluate Einstein’s 1905 

manuscript.  It then summarizes Einstein’s derivation and evaluates, purely on 

mathematical grounds, the equations against those rules to identify the error.  Finally, it 

begins to address the implications of the mathematical findings. 

 

Algebraic Foundation – The Mathematical Rules 

 

Consider the equation bra = .  This equation states that a  is the product of b  multiplied 

by r , for all values of b  and r .  In this equation, consider that b  is a known constant 

and that r  is the returned value from a function.  Notice that r  can be expressed as the 

function ),( nmf  such that ),( nmfr = , where m  and n  are function parameters.  Thus, 

the original equation can be rewritten as ),( nmbfa = .  Since ),( nmf  is an equivalent 
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mathematical expression for r , we can say that a  is the product of b  multiplied by 

),( nmf . 

 

The key mathematical question is whether or not the equality expressed by the equation 

),( nmbfa =  changes as a result of the specific arguments passed to the function.  This 

would mean that ),( nmbfa =  is true for some subset of m  and n , and that ),( nmbfa ≠  

is true for a different subset of m  and n .  Of course, the equality is always maintained 

since a  is defined as the value b  multiplied by the value returned by the function 

),( nmf .  Since b  times ),( nmf  always produces the value a , ),( nmbfa =  is true for 

all values m  and n .  We now express a  as a function ),( nmh  such that ),( nmha = .  

Thus we conclude that ),(),( nmbfnmh =  is maintained for all values m  and n .  The 

following statements are mathematically equivalent: 

brnmbfnmha === ),(),( . 

These statements enable r  to be determined without explicitly using the function 

),( nmf , if ),( nmh  is known.  Since we have already established that ),(),( nmbfnmh =  

for all values m  and n , it follows that ),(),( nmf
b

nmh
=  for all values m  and n .  This 

equation, ),(),( nmf
b

nmh
= , provides a means to test the validity of a system of 

equations, h  and f , when both functions are provided.  Specifically, if 

),(),( nmf
b

nmh
=  is true for one subset of m  and n , and ),(),( nmf

b
nmh

≠  is true for 

another subset of m  and n , then an error exists in either h  or f  that must be 

investigated and corrected. 
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Einstein's Two Time Equations 

 

Einstein’s transformation equations for time and length along the X-axis are 

2

2

2

1
c
v

c
vxt

−

−
=τ  

and 

2

2

1
c
v
vtx

−

−
=ξ , respectively.12  We note and emphasize that in Einstein’s 1905 

manuscript the transformations between coordinate systems occurs from ),,,( tzyx  to 

),,,( τζηξ , rather than to ),,,( tzyx ′′′′  as presented in many textbooks.13,14  Einstein’s 

use of ),,,( τζηξ  in his 1905 manuscript is equivalent to the use of ),,,( tzyx ′′′′  in his 

subsequent works.  As presented in Fig. 1, our use of the variables ),,,( τζηξ  on the left-

hand sides of the transformation equations agree with the equations presented in 

Einstein’s 1905 manuscript.15 

 

Source: Annalen der Physik 17, 891 (1905) 



Reexamining Special Relativity  6 

Copyright © 2003-2005 Steven Bryant 

FIG 1.  Einstein’s final transformation equations.  The transformation occurs from 

),,,( tzyx  to ),,,( τζηξ .  Einstein’s use of ),,,( τζηξ  is equivalent to his use of 

),,,( tzyx ′′′′  in later works. 

 

As presented in Fig. 2, Einstein derives the ξ  transformation as the equation16 τξ c=  

and builds the τξ c=  equation by replacing τ  with ⎟
⎠
⎞

⎜
⎝
⎛

−
′

− 22 vc
xvtα  such that 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
′

−== 22 vc
xvtcc ατξ .  Einstein continues to build the equation as 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
′

−
−
′

== 22 vc
xv

vc
xcc ατξ  by replacing t  with 

vc
x
−
′

, which, when simplified, 

produces 22

2

vc
xcc
−
′

== ατξ . 

 

Source: Annalen der Physik 17, 891 (1905) 
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FIG 2.  Einstein begins with the equation τξ c=  as the foundation for deriving his 

transformation equations, resulting in 22

2

vc
xcc
−
′

== ατξ . 

 

Finally, Einstein takes the equations 22

2

vc
xcc
−
′

== ατξ  and ⎟
⎠
⎞

⎜
⎝
⎛

−
′

−= 22 vc
xvtατ , 

replaces x′  with vtx − , and multiplies them by 2

2

1
c
v

− , producing the final 

transformation equation 

2

2

1
c
v
vtxc

−

−
== τξ  and 

2

2

2

1
c
v

c
vxt

−

−
=τ , as previously presented in 

Fig. 1.  The difference between the two derivations is the substitution of 
vc

xt
−
′

=  that is 

made in producing the ξ  transformation, but not in producing the τ  transformation.  In 

other words, time is represented as ⎟
⎠
⎞

⎜
⎝
⎛

−
′

−
−
′

= 22 vc
xv

vc
xατ  in the ξ  transformation and 

as ⎟
⎠
⎞

⎜
⎝
⎛

−
′

−= 22 vc
xvtατ  in the stand-alone time transformation, and equal one another only 

when 
c
xt = . 
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Evidence of the Mathematical Problem 

 

From the preceding discussion, the Einstein-Lorentz equations can be expressed as 

functions such that 

2

2

1
),(

c
v
vtxtxh

−

−
==ξ  and 

2

2

2

1
),(

c
v

c
vxt

txf
−

−
==τ .  Since we have 

shown that Einstein built the ξ  transformation as the equation τξ c= , we must be able 

to mathematically conclude that 

τξ ctxcftxh === ),(),( . 

Also from the preceding discussion, we must be able to show that 

τξ
=== ),(),( txf

c
txh

c
 

to conclude that ),(),( txf
c

txh
=  for all values x  and t .  However, we find that 

),(),( txf
c

txh
≠  for the majority of x  and t , producing ),(),( txf

c
txh
=  only when 

c
xt = .  Restated, the equations are only valid when ),(

),(

c
xxf

c
c
xxh

=  and, as discussed 

earlier, this finding represents a mathematical error that must be explored and corrected. 
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Implications 

 

This mathematical analysis suggest that 

2

2

1
c
v
vtxc

−

−
== τξ  is a specific instance of the 

equation τξ c= .  It also suggests that the time equation 

2

2

2

1
c
v

c
vxt

−

−
=τ  is incorrect.  These 

findings do not agree with the current interpretation of SR, which associates 

2

2

1
c
v
vtx

−

−  and 

2

2

2

1
c
v

c
vxt

−

−
 with fixed point transformations and τc  as the equation of a wave front. 

 

Since this paper challenges the current interpretation of SR on mathematical grounds 

rather than by challenging the meaning of the terms or equations, the mathematical 

implication that 

2

2

1
c
v
vtx

−

−  is a special case of the equation τc  is acceptable and must be 

validated.  Support of this conclusion requires 1) confirmation of a mathematical problem 

in Einstein’s other derivations, 2) correction of the equations, and 3) explanation of the 

revised equations such that they remain consistent with existing experimental evidence. 
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The problem with Einstein's 1912 derivation 

 

In his previously unpublished 1912 manuscript,17 Einstein derives the transformation 

equations using a different technique.  As with our previous analysis, we will define the 

mathematical rules and then evaluate Einstein’s derivation using those rules. 

 

 Equivalence Relations - The Mathematical Rules 

 

Consider the following two equations 

 
.dc

ba
=
=  (1) 

We can rearrange these equations to produce 

 
.0

0
=−
=−

dc
ba  (2) 

In this rearranged form, because the equations must total zero, we can show that a  must 

have the same value as b , and that c  must have the same value as d .  In other words, we 

can show that Equations 1 are equivalent to Equations 2. 

 

We now make an important distinction in how Equations 2 can be associated with one 

another.  Consider the following equation, 

 dcba −=− . (3) 
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We must elaborate on the meaning of Equation 3.  Mathematically, the expressions ba −  

and dc −  are equivalent to each other as they satisfy the reflexive, symmetric, and 

transitive relations.  However, the expressions ba − , dc − , and Equation 3, lack an 

important aspect of Equations 2, notably that they must equal 0.  For example, the 

following will satisfy Equation 3, but not Equations 1 and 2; 10=a , 5=b , 20=c , and 

15=d . 

 

Notice what happens when we consider the complete statements 0=− ba  and 0=− dc .  

The combined statements 0=− ba  and 0=− dc  are not equivalent to the statement 

dcba −=− , specifically due to a failure to adhere to the rules of the symmetric relation.  

Thus, the use of dcba −=−  as an equivalent statement for the combined statements 

0=− ba  and 0=− dc  represents a mathematical error as the constraining information – 

the fact that the individual equations must equal 0 - is lost. 

 

Evidence of the mathematical problem 

 

Einstein begins his 1912 derivation by stating the equations for two spheres as18 

 
,222

222

tczyx

ctzyx

′=′+′+′

=++
 (4) 

which can be rewritten as 

 
.22222

22222

tczyx
tczyx

′=′+′+′

=++
 (5) 
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Since these equations are in the form ba =  and dc = , Einstein rewrites them as19 

 
0

0
22222

22222

=′−′+′+′

=−++

tczyx
tczyx

 (6) 

and states that they “must be equivalent.”20  Einstein then associatesi the expressions 

22222 tczyx −++  and 22222 tczyx ′−′+′+′  to produce21 

 2222222222 tczyxtczyx ′−′+′+′=−++ . (7) 

As previously discussed, the expressions 22222 tczyx −++  and 22222 tczyx ′−′+′+′  

are equivalent to each other as they satisfy the reflexive, symmetric, and transitive 

relations.  Also discussed previously, 22222 tczyx −++ , 22222 tczyx ′−′+′+′ , and 

Equation 7, lack the important constraint from Equations 6, notably that they must equal 

0.  Now reconsider Equations 6.  The combined statements  

 022222 =−++ tczyx  and 022222 =′−′+′+′ tczyx  (8) 

are not equivalent to the statement  

 
2222222222 tczyxtczyx ′−′+′+′=−++  (9) 

due to a failure to adhere to the rules of the symmetric relation.  Since Equation 9 loses 

the constraint that the equations must equal 0, Einstein’s claim of equivalence is 

incorrect. 

 

                                                 

i Einstein writes the equations as 22222222222 )( tczyxtczyx ′−′+′+′=−++λ .  The use of 2λ  

does not change the analysis presented in this section.  Furthermore, Einstein concludes that 2λ  is 1. 
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Einstein uses Equation 9 as input into a matrix-based Minkowski calculation to produce 

the SR transformation equations.  While the remainder of Einstein’s matrix computation 

is correct, the error has already occurred.  Einstein has actually found a solution for the 

equations 

 
gtczyx

gtczyx
=′−′+′+′

=−++
22222

22222

 (10) 

which does not describe a spherical relationship between two coordinate systems. 

 

We conclude that the transformation equations are valid for motion along the X axis 

when  

 022222 =−++ tczyx  and 022222 =′−′+′+′ tczyx , (12) 

which occurs only when 
c
xt = , assuming that y  and z  equal 0.  An associated 

implication, of course, is that 
c
xt
′

=′ , since y′  and z′  will equal 0.  These findings are 

consistent with the results of our analysis of Einstein’s 1905 manuscript.  Einstein use of 

),,,( tzyx ′′′′  in this derivation, instead of the Greek variables ),,,( τζηξ , does not change 

the results of either analysis. 
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Analysis Confirmation 

 

While the above analysis has focused on the creation of the equation 

 22222222222 )( tczyxtczyx ′−′+′+′=−++λ , (13) 

we can also show that Equation 13 does not follow mathematically from Equations 6.  

Einstein states that Equations 6 are equivalent to each other, which is mathematically 

represented as 

 00 2222222222 =′−′+′+′⇔=−++ tczyxtczyx  (14) 

We will call this statement P.  Einstein then mathematically concludes that the above 

expression produces 

 
22222222222 )( tczyxtczyx ′−′+′+′=−++λ  (15) 

We will call this statement Q.  Statement P implies Q, such that any solution for P is also 

a solution for Q, regardless of the value of λ . Therefore Q can be used as a replacement 

for P as long as P would have been True. Such an implication does not enable us to pick 

any combination of ),,,( tzyx , but instead we are constrained to only those values that 

form a sphere. Using Q as a replacement for P for all combinations of ),,,( tzyx  

represents a mathematical error. 

 

While implication does not allow us to use Q for all combinations of ),,,( tzyx  and λ , 

we need to determine if equivalence will. Although Einstein determines that statement Q 

is an identity, it does not remove the requirement that P must be equivalent to Q for all 
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values of ),,,( tzyx  and λ . This includes the case where λ is 0. In such cases, Q can be 

True while P is True, indicating that the statements are not equivalent. Using Q as a 

replacement for P represents a mathematical error because the two statements are not 

equivalent. 

 

Q does not mathematically follow from P for all values of ),,,( tzyx  and λ . Thus, the 

remainder of Einstein's 1912 derivation is invalidated because Q is incorrectly used to 

replace P.  This finding confirms our earlier analysis. 

 

Einstein’s derivation presented in Appendix 1 of his Relativity book22 suffers from the 

same inconsistencies discussed above. 

 

Implications 

 

The commonly accepted definitions of the SR transformation equations are not 

mathematically supported since we have found mathematical inconsistencies in each of 

Einstein’s derivations.  Therefore, the accepted definition of 

2

2

1
c
v
vtx

−

−  as a fixed point 

equation remains called into question and this definition cannot be used as a defense 

against our analysis.  This analysis also lends support to the implication established 
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earlier that 

2

2

1
c
v
vtx

−

−  represents a specific instance of tc ′  (or τc  using the terminology of 

his 1905 derivation.). 

 

Correcting the Time Equation 

 

In order to review and effectively illuminate the root cause of the problem in Einstein’s 

1905 paper, we borrow terminology from the Computer Science discipline.  A function is 

defined as a function name, a set of parameters, and an equation prototype, such that:  

 

prototypeequationparametersname =)( . 

As an example, nmnmf += 7*),( , where f  is the function name, m  and n  are the 

parameters, and nm +7*  is the equation prototype. 

 

In a function, the parameters represent placeholders for arguments, which are passed to 

the function when the function is invoked, or called.  For example, when function f  is 

called with actual arguments 5=m  and 4=n , we produce the function invocation 

)4,5(f , resulting in the equation 47*5 + , which evaluates to 39.  Functions can also be 

called symbolically, passing variables as arguments.  For example, the function can be 

called with the variables a  and b  as actual arguments.  In this case, since am =  and 

bn = , invoking the function as ),( baf  produces ba +7*  as the equation.  We will use 
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the term “instantiation” to indicate the specific equation that results from invoking a 

function with actual arguments.  This leads to an important and significant distinction; 

 

A function’s equation prototype is not the equation, it is a template for the 

function’s instantiated equation. 

 

The instantiated function equation must be based on the actual arguments passed to the 

function.  Consider that each of the following equivalent functions; 

tstsf
xxxxf

nmnmf

+=
+=

+=

7*),(
7*),(

7*),(

2121  

when invoked as ),( baf , each produces the instantiated equation ba +7* . 

 

Einstein uses a Partial Differential Equation (PDE) to create the time function τ .  

Einstein begins by stating that vtxx −=′  and then begins to derive the time function τ  

by noting that 120 )(
2
1 τττ =+ , where 

),,0,0,0(

),,0,0,(

),,0,0,0(

2

1

0

vc
x

vc
xt

vc
xtx

t

+
′

+
−
′

+=

−
′

+′=

=

ττ

ττ

ττ

 

resulting in23 
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),0,0,(),0,0,0(),0,0,0(
2
1

vc
xtx

vc
x

vc
xtt

−
′

+′=⎥⎦
⎤

⎢⎣
⎡

+
′

+
−
′

++ τττ . 

Einstein treats24 0== τt  (in the above equation), resulting in: 

),0,0,(),0,0,0()0,0,0,0(
2
1

vc
xx

vc
x

vc
x

−
′

′=⎥⎦
⎤

⎢⎣
⎡

+
′

+
−
′

+ τττ . 

This equation is then used to build the PDE as25 

tvcxtvcvc ∂
∂

−
+
′∂

∂
=

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
τττ 111

2
1 . 

Einstein uses this PDE to build the equation prototype, ⎟
⎠
⎞

⎜
⎝
⎛

−
′

− 22 vc
xvtα , such that the τ  

function is defined as: 

⎟
⎠
⎞

⎜
⎝
⎛

−
′

−=′= 22),,,(
vc

xvttzyx αττ . 

This is a more complete function definition than contained in Einstein’s statement that 

“Since τ  is a linear function, it follows from these equations that ⎟
⎠
⎞

⎜
⎝
⎛ ′

−
−= x

vc
vt 22ατ  

where α  is [an unknown function].” 26  We emphasize that, since Einstein uses the PDE 

to produce the function, τ  is the function name, x′ , y , z , and t  are the function 

parameters, and ⎟
⎠
⎞

⎜
⎝
⎛

−
′

− 22 vc
xvtα  is the equation prototype. 

 

As discussed earlier, the function can be defined using different parameter variables.  

Therefore, each of the following function definitions are equivalent: 
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⎟
⎠
⎞

⎜
⎝
⎛

−
′

−=′

⎟
⎠
⎞

⎜
⎝
⎛

−
−=

⎟
⎠
⎞

⎜
⎝
⎛

−
−=

22

22
1

44321

22

),,,(

,),,,(

,),,,(

vc
xvttzyx

vc
vx

xxxxx

vc
vaddcba

ατ

ατ

ατ

 

Each of these functions yield the same result when invoked with the same arguments.  

We now complete the derivation and show that the time function, when invoked and 

incorporated into the equation 

),0,0,(),0,0,0()0,0,0,0(
2
1

vc
xx

vc
x

vc
x

−
′

′=⎥⎦
⎤

⎢⎣
⎡

+
′

+
−
′

+ τττ , 

produces 

⎟
⎠
⎞

⎜
⎝
⎛

−
′

−
−
′

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
−

+
′

+
−
′

+⎟
⎠
⎞

⎜
⎝
⎛

−
− 222222

0)(00
2
1

vc
xv

vc
x

vc
v

vc
x

vc
x

vc
v ααα , 

which simplifies to 

.
11 2

2

2

2

⎥
⎦

⎤
⎢
⎣

⎡
−

′
=

⎥
⎦

⎤
⎢
⎣

⎡
−

′

c
vc

x

c
vc

x αα  

Following the replacement of x′  with vtx − , we find  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎥
⎦

⎤
⎢
⎣

⎡
−

−

2

2

2

2

11
c
vc

vtx

c
vc

vtx αα . 

This leads to the conclusion that the instantiated time equation is: 
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( )
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

−
′

′=+=

2

2201

1
),0,0,(

2
1

c
vc

vtx
vc

xx αττττ . 

“Since τ  is a linear function,” we conclude that the time and length transformations must 

be based on the instantiated equation 1τ  and not on the function equation prototype τ .  

We have shown that 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

−
′

′=

2

21

1
),0,0,(

c
vc

vtx
vc

xx αττ  and further conclude that 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

−
′

′==

2

21

1
),0,0,(

c
v
vtx

vc
xxcc αττξ . 

 

This leads to a key finding that, due to the use of the same variable names as the 

parameters and as the actual arguments, Einstein incorrectly simplified the stand-alone τ  

transformation using the time equation prototype ⎟
⎠
⎞

⎜
⎝
⎛

−
′

− 22 vc
xvtα  instead of instantiating 

the equation prototype to produce 

⎥
⎦

⎤
⎢
⎣

⎡
−

−

2

2

1
c
vc

vtxα .  However, his replacement of t  with 

vc
x
−
′

 in deriving the ξ  equation resulted in the de facto instantiation of the equation, 

producing the correct ξ  transformation 

⎥
⎦

⎤
⎢
⎣

⎡
−

−

2

2

1
c
v
vtxα .  Since time is a function, both 

transformations must be created using the instantiated time equation. 
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Notice that the equations 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

2

21

1
c
vc

vtxατ  and 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

2

2

1
c
v
vtxαξ  have not been multiplied 

by 2

2

1
c
v

−  as the time adjustment.  We will show later in this paper that this adjustment 

is not automatic and that the actual value of the adjustment is not fixed. 

 

3.  Complete and Incomplete Coordinate Systems 

 

With the mathematical problem in Einstein’s time transformation identified and 

corrected, we can begin to reevaluate and reinterpret the meaning of the corrected 

equations and their implications.  Einstein defined two postulates, stating that: 

 

1. The laws by which the states of physical systems undergo change are not affected, 

whether these changes of state be referred to the one or the other of two systems 

of co-ordinates in uniform translatory motion. 

2. Any ray of light moves in the “stationary” system of co-ordinates with the 

determined velocity c, whether the ray be emitted by a stationary or by a moving 

body.27 

 

Einstein defined one type of coordinate system,28 or inertial reference frame, which he 

associated with the transformation equations.  However, we observe that a reference 

frame moving through a wave medium can have one of two principal behaviors.  First, 
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the wave medium can move with respect to the moving body.  Second, the wave medium 

does not move with respect to the moving body.  In order to revise the postulates, the 

definition of a coordinate system needs to be extended.  Einstein assumed one type of 

coordinate system which had two states; stationary and moving.29,30  This paper retains 

the states and defines two types of coordinate systems: a Complete Coordinate System 

and an Incomplete Coordinate System.  These systems are defined as: 

 

A Complete Coordinate System is a coordinate system, K’, with respect to 

coordinate system K, where the underlying phenomenon under observation 

changes velocity by the same amount as the velocity applied to K’. 

An Incomplete Coordinate System is a coordinate system, K’, with respect to 

coordinate system K, where the underlying phenomenon under observation does 

not change velocity by the same amountii as the velocity applied to K’. 

 

Here we provide an example to illustrate the difference between a Complete and 

Incomplete Coordinate Systemiii.  Consider a train on a straight and flat railroad track.  

The train represents the moving coordinate system and the ground upon which the tracks 

are laid, the stationary system.  To clearly illustrate the concepts behind the two types of 

                                                 

ii Initially, this paper assumes that the velocity of the wave does not change at all as result of applying 

velocity to the K’ system. 

iii This example is best read without overlaying it with concepts such as length contraction or time dilation. 
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coordinate systems, we replace a wave with a surrogate; in this case a jogger.iv  Begin 

with the rear of the train at the origin of the track, which is marked along its entire length 

to indicate distance.  The front of the train is at x′ .  When the train is stationary, a jogger 

can travel at velocityv c , from the rear of the train to its front and return again to the rear.  

He will travel a total distance of x′2 .  If he is moving at velocity c , the total time for him 

to make this round trip journey (e.g., one oscillation) is 
c
x′2 . 

 

Now consider that the train is moving forward at velocity v .  In an Incomplete 

Coordinate System, the jogger runs along side the train.  Of course v  has to be less than 

c  or the jogger will never make it to the front of the train.  We can again ask the 

question, how far does the jogger now need to jog in order to reach the front of the train 

and again return to the rear?  The answer to the question, while mathematically more 

complicated, is found to be 

2

2

1
2

c
v

x

−

′
.  This equation is based on summing the time 

required to jog to the front of the train, 
vc

x
−
′

, with the time required to jog to the rear, 

vc
x
+
′

, to produce a the total time for his round trip journey as 

⎥
⎦

⎤
⎢
⎣

⎡
−

′

2

2

1
2

c
vc

x .  The total 

                                                 

iv The author acknowledges that a jogger is not a physical manifestation of a light wave.  The intent of these 

examples is to provide clarity around the concepts of Complete and Incomplete Coordinate Systems. 

v While c  is typically associated with the speed of light, in our example c  simply represents the speed of 

the jogger (e.g., 5 km/h). 
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distance he jogs is simply this amount of time multiplied by his velocity, c .  With these 

equations, we can ask one final question; how far is half his journey (e.g., one-half the 

oscillation distance) and how long does that take?  The answer to this question is found 

by dividing these equations by two, producing 

2

2

1
c
v

x

−

′
 and 

⎥
⎦

⎤
⎢
⎣

⎡
−

′

2

2

1
c
vc

x  for length and time, 

respectively. 

 

Can the last question be answered without explicitly knowing the length of the train?  

Fortunately, the length of the train can be determined if the current position of the front 

of the train, x , its velocity, v , and how long it's been traveling, time t , are all known.  

We can use this information and apply the Newtonian equation vtxx −=′  to find the 

original length x′ , enabling us to answer the question.  Alternatively, we can simply 

replace x′  with vtx −  in the numerator of the above equations to produce 

2

2

1
c
v
vtx

−

−  and 

⎥
⎦

⎤
⎢
⎣

⎡
−

−

2

2

1
c
vc

vtx . 

 

In a Complete Coordinate System, the person is jogging inside of the train.  The person 

journeys from the rear to the front and back to the rear again.  The equations are applied 

as if the train were stationary with a round trip (e.g., one oscillation) travel length of x′2  
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and a round trip travel time of 
c
x′2 .  These values can be divided by two to produce x′  

and 
c
x′ , representing one-half the round trip journey length and time, respectively. 

 

With two types of coordinate systems defined, the postulates are updated as follows: 

1. The laws by which the states of physical systems undergo change are not affected, 

whether these changes of state be referred to the one or the other of two complete 

systems of coordinates in uniform translatory motion. 

2. Any ray of light moves in a “stationary” or “complete” system of coordinates with 

the determined velocity c, as defined by the properties of that coordinate system, 

whether the ray be emitted by a stationary or by a moving body. 

 

The second postulate is further generalized so that it applies to all waves rather than 

specifically to rays of light.  As such, it can be rewritten as follows, where c represents 

the speed of the wave under observation: 

2. Any wave moves  in a “stationary” or “complete” system of coordinates with 

the determined velocity c, as defined by the properties of that coordinate 

system, whether the wave is caused by a stationary or by a moving body. 

 

Without the distinction between a Complete and an Incomplete Coordinate system, the 

velocity of the train would have to be restricted to less than that of the jogger in order to 
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satisfy Einstein’s original postulates.  Both the equations and the postulate would apply to 

the same type of coordinate system.  However, with the postulates revised for Complete 

and Incomplete Coordinate Systems, the equations 

2

2

1
c
v
vtx

−

−  and 

⎥
⎦

⎤
⎢
⎣

⎡
−

−

2

2

1
c
vc

vtx  apply to the 

Incomplete Coordinate System and the postulates apply to the Complete Coordinate 

System.  It must be emphasized that in both types of systems the velocity of the train is 

not limited to the velocity of the jogger. 

 

4.  Mathematical Foundations 

 

With a basic foundation of Complete and Incomplete Coordinate Systems established, we 

now begin to algebraically define the equations for a moving Incomplete Coordinate 

System by noting that distance is measured in two ways.31  Distance is determined using 

non-wave measurements, which Einstein refers to as rigid rods, and are represented in 

this paper as discrete values or variables (e.g., x, y, and z).  Distance is also determined 

using wave-based measurements, which Einstein refers to as moving rods, which are 

represented as equations multiplying the speed of the wave by the amount of time 

required for the wave to travel the necessary distance (e.g., xct , yct , and zct ).  When 

measuring distance in a stationary or Complete Coordinate System, the following 

equations apply such that 
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.

,
,

z

y

x

ctz
and

cty
ctx

=

=
=

 (16) 

 

We now expand on the train example provided in the previous section.  Consider the 

dimensions of the train as length x  along the X axis, length y  along the Y axis, and 

length z  along the Z axis.  Notice that we use length x  instead of x′  as was used by 

Einstein and in our original train example.  This is to emphasize the importance of the 

length along the X axis and recognize that it is not simply a temporary variable. 

 

As in the previous section, begin with the rear of the train at the origin of the track, which 

is marked along its entire length to indicate distance.  The front of the train is at x .  

When the train is stationary, a jogger can travel at velocity c , from the rear of the train to 

its front and return again to the rear.  He will travel a total distance of x2 .  If he is 

moving at velocity c , the total time for him to make the round trip journey (e.g., one 

oscillation) is 
c
x2 . 

 

In an Incomplete Coordinate System, the train is moving along the track at velocity v .  

Performing the same mathematical analysis performed in the previous section, we can 

determine that the total round trip length and time required for the jogger to complete one 
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oscillation is 

2

2

1
2

c
v

x

−
 and 

⎥
⎦

⎤
⎢
⎣

⎡
− 2

2

1
2

c
vc

x , respectively.  Finally, one-half the round trip 

length and time are 

2

2

1
c
v

x

−
 and 

⎥
⎦

⎤
⎢
⎣

⎡
− 2

2

1
c
vc

x , respectively. 

 

In order to derive the equations for the Y and Z axes, again consider the train stationary 

positioned with the rear at the origin.  The rear of the train has two tail lights, one on the 

right rear corner and another at the left rear corner.  The distance between the two tail 

lights along the Y axis is y .  Now position a new jogger at the left rear tail light.  When 

the train is stationary, the distance that the jogger travels when running from the left tail 

light to the right tail light and returning to the left tail light (e.g., one oscillation) is y2 .  

If he is traveling at velocity c , the total time required to make this journey is 
c
y2 . 

 

Now consider that the train is moving forward at velocity v .  We again ask the question, 

in an Incomplete Coordinate System, how far will the jogger need to travel in order to 

reach the right tail light and return to the left tail light, and how long with it take?  The 

answer for the length, which is found using the Pythagorean Theorem, is 

2

2

1
2

c
v

y

−

.  The 

total time for the jogger to make his round trip journey is 

2

2

1
2

c
vc

y

−

.  We can again ask 
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how far the jogger needs to travel to reach half his distance and how long it will take, 

producing 

2

2

1
c
v

y

−

 and 

2

2

1
c
vc

y

−

 for length and time, respectively.  In a similar manner, 

the equations are established for the Z axis. 

 

Mathematically, we establish ξ  as the distance that the jogger runs along the X axis, and 

it is determined by multiplying his velocity, c , by the time it takes to make one-half the 

journey, ξτ .  Similar equations are established for length η , which is determined by 

multiplying velocity c  by time ητ , representing one-half the journey along the Y axis; 

and along the Z axis using length ζ  and time ζτ , representing one-half the journey.  

These equations are mathematically established as 

 
.
,
,

ζ

η

ξ

τζ

τη

τξ

c
c
c

=

=

=

 (17)  

We will refer to the train as the K’ coordinate system and the ground as the K coordinate 

system.  The resulting system of wave-based equations for a moving Incomplete 

Coordinate System is 
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2
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y
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−

=

−

=

−
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.
1
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1

,
1

2

2

2

2

2

2
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v
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t
c
v

t

z

y

x

−

=

−

=

−
=

ζ

η

ξ

τ

τ

τ

 (18) 

 

In the equations, c  is generalized to represent the propagation speed of the wave.  In 

these equations, c  (or the speed of the wave) represents a limit on velocity only when a 

wave relationship is required or desired between points within a moving Incomplete 

Coordinate System.  While the velocity of K’ can exceed this limit, oscillations will not 

occur. 

 

The First Equation Adjustment 

 

The first adjustment to Equations 18 determines the length of K’ as x  when x  is not 

originally given.  As has already been mentioned, when K’ is in motion, its position is 

determined in K by multiplying velocity by the amount of time, kt , that K’ has been in 

motion, adding this to its original position, x , thus arriving at a value in K.  This results 

in the Newtonian transformation equation kk vtxx += .  Rearranging this equation we 

obtain kk vtxx −= , enabling us to determine the original length x with respect to the K 

system when kx  and kt  are known.  Combining the Newtonian equation kk vtxx −=  
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with the wave-based equation 

2

2

1
c
v

x

−
=ξ , we obtain ,

1 2

2

c
v
vtx kk

−

−
=ξ  and since ξτξ c= , 

we also obtain 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

2

2

1
c
vc

vtx kk
ξτ . 

 

Since in a moving system, wave-based and non-wave based distances apply and have 

different meanings, the Newtonian transformation and the Incomplete Coordinate System 

wave-equations both apply.  The non-wave based, commonly referred to as fixed-point, 

transformations are reestablished as 

  

.

,
,

,

k

k

k

kk

tt
and

zz
yy

vtxx

=

=
=

−=

 (19) 

 

The Second Equation Adjustment 

 

The second adjustment assumes that time is kept by measuring the oscillations of the 

waves traveling along the Y or Z axis.  The application of velocity to K’ will change the 

time oscillations since each oscillation takes longer to complete.  Einstein normalizes the 

equations and corrects for the effect of velocity on K’ by multiplying the equations by 

2

2

1
c
v

− .  Since the length equations are multiplied by the same adjustment, it can be 
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inferred that length is determined by counting the time oscillations.  Following the 

application of the second adjustment, we complete the algebraic derivation to arrive at 

 
,
,

,
1 2

2
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c
v

vtx kk

=
=

−

−
=

ζ
η

ξ

 

.
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,
1 2

2
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=

=

−

−
=

ζ

η

ξ

τ

τ

τ

 (20) 

 

Equations 20 imply that time along the Y and Z axis has not changed, making it easy to 

overlook the time transformations occurring from yt  to ητ  and from zt  to ζτ .  While 

performed mathematically, Einstein does not appear to explicitly acknowledge in his 

1905 derivation this time correction nor does he provide reasons for electing to measure 

time in K’ using the wave traveling along the Y or Z axes. 

 

Equation Extensions 

 

The two adjustments are not a requirement in this model.  Since time can be measured 

using timekeeping devices significantly independent of the effects of the given velocity v 

on K’, we do not require that a different time be kept in K’.  Therefore, we do not 

automatically multiply the equations by 2

2

1
c
v

−  as a time adjustment, but apply the 

adjustment when time or length within K’ is determined by measuring the wave 

oscillations within that moving Incomplete Coordinate System, or as needed by 



Reexamining Special Relativity  33 

Copyright © 2003-2005 Steven Bryant 

application.  Furthermore, the adjustment can be as large as multiplying by 2

2

1
c
v

−  if time 

is kept along the X axis rather than along the Y or Z axes.  We reintroduce α  to account 

for this adjustment.  We also note that x  can be replaced by kk vtx −  when needed by 

application. 

 

The resulting wave-based equations for an Incomplete Coordinate System are  

 

,

1

,
1

,
1

2

2

2

2

2

2

c
v

z
c
v

y
c
v

x

−

=

−

=

−
=

αζ

αη

αξ

 

.
1

,
1

,
1

2

2

2

2

2

2

c
v

tand

c
v

t
c
v

t

z

y

x

−

=

−

=

−
=

ατ

ατ

ατ

ζ

η

ξ

 (21) 

 

Notice, however, that Equations 21 can be generalized to produce wave equations for 

both Complete and Incomplete Coordinate systems.  In order to accomplish this, we 

introduce the variable μ into the equations.  The two extreme cases are determined by μ 

having a value of 1, representing an Incomplete Coordinate System and 0, representing a 

Complete Coordinate System.  Notice that μ can take on the range of real values between 
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0 and 1, representing variations of an Incomplete Coordinate System.  The equations as 

applied to Complete and Incomplete Coordinate Systems are revised asvi 
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 (22) 

 

5.  Experimental Confirmation and Implications 

 

Because there is a mathematical relationship between this model and the Einstein-Lorentz 

equations, many experiments that have been used as confirmation of the SR equations 

will still apply.  It is important to recognize that Einstein’s SR equations, while 

mathematically inconsistent, will produce mathematically correct results for the ξτ  

                                                 

vi This paper has derived the equations for complete and incomplete coordinate systems using c  as the 

variable representing the sustained velocity for the phenomena under observation (e.g., wave).  This was 

done to show the similarity between this model and Einstein’s model.  And, while we have stated that this 

variable should be generalized, one cannot help but to continue to associated it with the speed of light.  For 

this reason, this variable should be represented using the variable w .  This change will be made to future 

papers. 
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equation when 
c
xt =  and the equations are normalized for time by multiplying by 

2

2

1
c
v

− .  This model will distinguish itself from Einstein’s for time calculations as the 

difference between t  and 
c
x  increases.  There is no difference between the two models 

for length along the X axis with the equations normalized by 2

2

1
c
v

− .  When the 

equations are not normalized because the time measurement is performed in the 

stationary system, the expected difference between the two models of 
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−

−
−

2

2

2

2

1

1

1

1

c
v

c
v

x  for length along the X axis begins small, but increases as velocity 

increases. 

 

In agreement with current experimental results, time will appear to run slower in a 

moving Incomplete Coordinate System when compared to the stationary reference 

system.  However, this model associates the time delay in the moving system with the 

oscillations traveling farther and taking longer, rather than to unique times within each 

system.  This mathematically consistent theory aligns with experimental results such as 

Ives-Stilwell.32  Interestingly, this model suggests that the Michelson and Morley class of 

experiments should be able to detect absolute movement.  This model lends support to 

the arguments of Ives-Stilwell, Miller, Cahill, Munéra, and others, that the Michelson and 
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Morley results have been incorrectly analyzed and can be explained using alternative 

theories. 33,34,35,36,37 

 

Finally, this model suggests that the properties of the wave medium might be controlled 

or modified within a Complete Coordinate System.  This would enable the wave behavior 

to appear faster or slower in the Complete Coordinate System than in the stationary 

reference system.  It may be possible to modify current experiments associated with 

super- and sub-luminal light38,39,40 to validate the behaviors and equations associated with 

a Complete Coordinate System. 

 

5.  Conclusions 

 

The Relativity in Complete and Incomplete Coordinate Systems model associates no 

mathematical significance to a light wave over any other type of wave.  In addition, the 

model does not support upper limits on velocity, except when oscillations are required in 

a moving Incomplete Coordinate System.  The model can be used for other types of wave 

mediums, which may simultaneously coexist with one another.  When the equations are 

generalized to all waves, they clearly support mediums in which the wave speeds are 

slower than the speed of light as well as mediums in which the wave speeds are faster.  

The value for velocity, c , is generalized to refer to the speed of the wave through the 

medium.  This model supports the conceptually idea of a yet to be discovered wave 

medium with properties different than, and with propagation characteristics significantly 
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faster than, those currently associated with EMF.  For example, if a quantum wave 

medium is discovered, it could define a faster-than-light quantum wave velocity that 

could associate this model with entanglement as observed in quantum mechanics. 

 

The Relativity in Complete and Incomplete Coordinate Systems reestablishes the 

Newtonian equations for non-wave based, or fixed-point, transformations.  The wave-

based equations as presented in Equations 22 are defined as a specific instance of their 

more general equations presented in Equations 17.  While the wave-based equations 

associate the pointsvii ),,,( kk tzyx  with ),,,( ξτζηξ , there is not a one-to-one relationship 

between the two points since for any ξ  there is one and only one ξτ .  The implication is 

that the theoretical predictions of SR, which require a one-to-one relationship between 

space-time points, will need to be revisited.  This model offers an opportunity to revise 

and extend our understanding of space and time. 
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