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Einstein’s Special Relativity transformation equations are the foundation of the modern
understanding of space and time. These equations are believed to be mathematically
consistent. Here we find that the commonly accepted Special Relativity equations are not
mathematically consistent and were created using steps that include subtle, yet
significantly important, mathematical errors. Because these findings are mathematical in
nature, they can be confirmed independently and are not dependent on any physics
terminology associated with Special Relativity. Thisdiscovery, and the required
correction, has implications on the predictive characteristics of the equations as well as

on our theoretical understanding of space and time.
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1. Introduction

Einstein’s Theory of Special Relativity" (SR) reconciled the relationship between a
moving body and the behavior of light. SR also introduced severa paradoxes, the most
prominent of which are length contraction and time dilation.? Challengersto SR often
sitelogical contradictionsin one of the paradoxes. However, since the SR community
has already established the meaning of the terms and have explained the paradoxes, such

7,89
S

challenges are met with resistance.**>® Furthermore, recent attempts”®® to challenge or

redefine SR have not first identified the root cause of the problem with SR.

This paper differs from previous challengesin that it does not rely on paradoxes nor does
it first redefine the commonly accepted meaning or interpretation of the equations or
variables. 1t ssimply presents the mathematical inconsistenciesin each of Einstein’s
derivations of the SR equations. Many theoretical challengers of SR accept the equations
as mathematically correct and have not pursued this path.'*** The advantage of a
mathematical approach isthat it is objectively measurable. Mathematical conclusions are
not based on what terms mean; they are based on the adherence to certain mathematical

rules. Either the rules are followed or they are not.

If the findings of mathematical errorsin Einstein’s derivations are found to be correct, SR
cannot be subsequently supported on the basis of experimental results. Experimental
results can only separate theories into two classes; those that are consistent with the

results and those that are not. Importantly, experimental results cannot be used as proof

Copyright © 2003-2005 Steven Bryant



Reexamining Special Relativity 3

of amathematically inconsistent theory. An alternative theory, which is mathematically

correct and remains consistent with the results, must be found.

2. Revisiting Einstein’s SR Transformation Derivations

We begin by illustrating mathematical problemsin Einstein’s 1905 and 1912 derivations
of the SR equations. We will then identify the cause of the problem in his 1905

derivation and correct the equations.

The problem with Einstein’s 1905 derivation

This section establishes the mathematical rules used to evaluate Einstein’s 1905
manuscript. It then summarizes Einstein’s derivation and evaluates, purely on
mathematical grounds, the equations against those rules to identify the error. Finally, it

begins to address the implications of the mathematical findings.

Algebraic Foundation — The Mathematical Rules

Consider the equation a = br . This equation statesthat a isthe product of b multiplied
by r,for al vauesof b and r. In thisequation, consider that b isaknown constant
and that r isthe returned value from afunction. Noticethat r can be expressed asthe

function f(m,n) suchthat r = f(m,n), where m and n are function parameters. Thus,

the original equation can be rewritten as a = bf (m,n). Since f(m,n) isan equivalent
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mathematical expression for r, we can say that a isthe product of b multiplied by

f(m,n).

The key mathematical question is whether or not the equality expressed by the equation

a = bf (m,n) changes as aresult of the specific arguments passed to the function. This
would mean that a = bf (m,n) istrue for some subset of m and n, and that a = bf (m,n)
istrue for adifferent subset of m and n. Of course, the equality is always maintained
since a isdefined asthe value b multiplied by the value returned by the function
f(m,n). Since b times f(m,n) always producesthevalue a, a =bf (m,n) istruefor
all vadlues m and n. We now express a asafunction h(m,n) suchthat a =h(m,n).
Thus we conclude that h(m, n) = bf (m,n) ismaintained for al values m and n. The
following statements are mathematically equivalent:
a=h(m,n) =bf (m,n) =br.
These statements enable r to be determined without explicitly using the function

f (m,n), if h(m,n) isknown. Since we have aready established that h(m,n) = bf (m,n)

for al values m and n, it follows that h(nl;,n) = f(m,n) foral values m and n. This
: h(m,n) . -
equation, r = f(m,n), provides ameansto test the validity of a system of

equations, h and f , when both functions are provided. Specificaly, if

h(m,n)
b

h(m,n)

= f(m,n) istruefor one subset of m and n, and

# f(m,n) istruefor

another subset of m and n, then an error existsin either h or f that must be
investigated and corrected.
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Einstein's Two Time Equations

VX
t -

2

Einstein’ s transformation equations for time and length along the X-axisare 7 = —Cc

X—vt

2
\'
e

manuscript the transformations between coordinate systems occurs from (x,y, z,t) to

and & = , respectively.’* We note and emphasize that in Einstein’s 1905

(&,n,¢,7), rather thanto (x',y',z',t") as presented in many textbooks.**** Einstein’s
useof (&£,n,<,7) inhis 1905 manuscript is equivaent to theuse of (x',y’,z',t") inhis
subsequent works. As presented in Fig. 1, our use of the variables (£,7,¢,7) on the left-

hand sides of the transformation equations agree with the equations presented in

Einstein’s 1905 manuscript.™

Auns dieser und der vorhin gefundenen Relation folgt, daB
@) =1 sein mub, so daB die gefundenen Transformations-
gleichungen iibergehen in:

T = I'? ( f — 5. I) 1

'F."I

Frp

= 3@ =1,

=1

=5

wobel
) -

- = 1/1 :( l;.:)::- 1

Source: Annalen der Physik 17, 891 (1905)
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FIG 1. Einstein’s final transformation equations. The transformation occurs from
(x,y,z,t) to (&,1,¢,7). Einstein’s use of (&,7,4,7) is equivalent to his use of

(x',y',z',t") in later works.

As presented in Fig. 2, Einstein derivesthe & transformation as the equation® & =cr

!

VX
c"—vVv

2

and buildsthe & = cr equation by replacing = with a(t — ) such that

2 2

E=cr=cC a[t— e H.Einsteincontinuestobuildtheequationas

f=cr=c Q[L_ R 2) by replacing t with —— , which, when simplified,
| lc-v c¢®-v c—Vv
2Xr
produces § =cr =a———
cC -V

Mit Hilfe dieses Hesultates ist es lsicht, die GriBen £ 4,
zn ermitteln, indem man durch Gleichungen ausdriickt, dab
sich das Licht (wie das Prinzip der Eonstanz der Licht-
geschwindigkeit in Verbindung mit dem Relativititsprinzip
verlangt) auch im bewegten System gemessen mit der Ge-
schwindigkeit ¥ fortpflanzt. Fiir einen zur Zeit £ =10 in
Richtung der wachsenden # ausgesandten Lichtstrahl gilt:

f=Fr,
oder

2 ¥ .
g:ﬂ.;{t—ma‘:)-

Nun bewegt sich aber der Lichtstrahl relativ zum Anfangs-
punkt von & im ruhenden System gemessen mit der Ge-
schwindigkeit F— v, so daB gilt:

E

g =1t
Setzen wir diesen Wert von ¢ in die Gleichung fiir £ ein, so

-
erhalten wir:
F? B
E=a 7.

Source: Annalen der Physik 17, 891 (1905)

Copyright © 2003-2005 Steven Bryant



Reexamining Special Relativity 7

FIG 2. Einstein begins with the equation & =cr as the foundation for deriving his

transformation equations, resulting in £ =cr = a —;
C

Finally, Einstein takes the equations £ =cr =« f
C

2
replaces x’ with x —vt, and multiplies them by 1Il—\cl—z , producing the final

S
X—vt 2
and 7 = ¢

v? v?
-5 1/1—02

Fig. 1. The difference between the two derivations is the substitution of t =

transformation equation & =cz = , aspreviously presented in

!

that is
c—V

made in producing the & transformation, but not in producing the = transformation. In

!

o X VX
other words, timeisrepresented as 7 = a(— -—
C—V Cc° -V

!

j inthe & transformation and

2

vx' : : .
asr= a(t - j in the stand-al one time transformation, and equal one another only
c°—-v
X
when t =—.
C
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Evidence of the Mathematical Problem

From the preceding discussion, the Einstein-Lorentz equations can be expressed as

VX
t_i
— 2
functions such that & = h(x,t) = X Vt2 and 7 = f(x,t) = ¢ = . Since we have
v v
T T

shown that Einstein built the & transformation as the equation & = ¢z, we must be able

to mathematically conclude that
E=h(x,t)=cf (x,t)=cr.
Also from the preceding discussion, we must be able to show that

¢ DO _iwy=r

to conclude that @: f(x,t) for al values x and t. However, we find that
M;ﬁ f (x,t) for the mgjority of x and t, producing M: f (x,t) only when
C C
h(x,”)

tzg. Restated, the equations are only valid when cC = f(x,%) and, as discussed

earlier, this finding represents a mathematical error that must be explored and corrected.
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Implications

This mathematical analysis suggest that & =c7 = isaspecific instance of the

2

v
1-—
C2
equation & =cr. It also suggests that the time equation 7 = ¢ = isincorrect. These
v
1-
CZ
- . . . . . —vt
findings do not agree with the current interpretation of SR, which associates X V2 and
v
e
VX
t-—>
¢ - with fixed point transformations and cz as the equation of awave front.
v
1——
C2

Since this paper challenges the current interpretation of SR on mathematical grounds
rather than by challenging the meaning of the terms or equations, the mathematical

X —vt

implication that isaspecial case of the equation ¢z is acceptable and must be

2

\"
1-—=
C

validated. Support of this conclusion requires 1) confirmation of a mathematical problem
in Einstein’s other derivations, 2) correction of the equations, and 3) explanation of the

revised equations such that they remain consistent with existing experimental evidence.
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The problem with Einstein’s 1912 derivation

In his previously unpublished 1912 manuscript,™’ Einstein derives the transformation
eguations using a different technique. Aswith our previous analysis, we will define the

mathematical rules and then evaluate Einstein’s derivation using those rules.

Equivalence Relations - The Mathematical Rules

Consider the following two equations

a=b
1
4 (1)
We can rearrange these equations to produce
a-b=0
2
c—d=0. @

In this rearranged form, because the equations must total zero, we can show that a must
have the samevalue as b, and that ¢ must have the samevalueas d . In other words, we

can show that Equations 1 are equivalent to Equations 2.

We now make an important distinction in how Equations 2 can be associated with one

another. Consider the following equation,

a-b=c-d. (3
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We must elaborate on the meaning of Equation 3. Mathematically, the expressions a—b
and c—d areequivalent to each other asthey satisfy the reflexive, symmetric, and
transitive relations. However, the expressions a—b, c—d , and Equation 3, lack an
important aspect of Equations 2, notably that they must equal 0. For example, the
following will satisfy Equation 3, but not Equations1 and 2; a=10, b=5, ¢ =20, and

d =15.

Notice what happens when we consider the complete statements a—b =0 and c—d =0.
The combined statements a—b =0 and ¢ —d = 0 are not equivalent to the statement
a—b=c-d, specifically dueto afailure to adhere to the rules of the symmetric relation.
Thus, theuseof a—b=c—-d asan equivaent statement for the combined statements
a—b=0 and c—d = 0 represents amathematical error as the constraining information —

the fact that the individual equations must equal O - islost.

Evidence of the mathematical problem

Einstein begins his 1912 derivation by stating the equations for two spheres as'®

JX2+y?+z? =ct

(4)
IXI2+yf2+Z!2 :Ct',
which can be rewritten as
2 2 2 242
X“+y +z°=ct
©)

Xr2 + yrZ + 272 — C2t72
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Since these equations are in theform a=b and ¢ = d , Einstein rewrites them as'®

X2 +y?+2°-ct?*=0
(6)

X!2+y12+zr2_c2t!2 :0

and states that they “must be equivalent.”?® Einstein then associates the expressions
x> +y2+z2-ci?and x'2+y'?+2'> —c?'? to produce®
X2+y2+22—C2t2 :Xr2+yr2+212_c2tr2. (7)

As previously discussed, the expressions x* + y* +z° —c’t” and x>+ y’? +z'* —c’t’?

are equivalent to each other as they satisfy the reflexive, symmetric, and transitive
relations. Also discussed previoudly, x? + y? +z% —c?t?, x> +y’? +z'* —c?t’?, and
Equation 7, lack the important constraint from Equations 6, notably that they must equal

0. Now reconsider Equations 6. The combined statements
x?+y2+z2—ct®=0and x?+y?+2*-c’'? =0 )

are not equivalent to the statement

X2+y2+22—C2t2 :X/2+y!2+zl2_c2t!2 (9)

due to afailure to adhere to the rules of the symmetric relation. Since Equation 9 loses
the constraint that the equations must equal 0, Einstein’s claim of equivalenceis

incorrect.

' Einstein writesthe equationsas A° (X + Y + 2% —¢’t?) = x>+ y'* + 2'> —¢*t'*. Theuseof A°

does not change the analysis presented in this section. Furthermore, Einstein concludes that A sl
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Einstein uses Equation 9 as input into a matrix-based Minkowski calculation to produce
the SR transformation equations. While the remainder of Einstein’s matrix computation
is correct, the error has already occurred. Einstein has actually found a solution for the

eguations

X2 +yr+z?-cit? =
R (10)
X“+y“+z7'°-ct'“ =g

which does not describe a spherical relationship between two coordinate systems.

We conclude that the transformation equations are valid for motion along the X axis

when

X*+y*+z°-ct?*=0and xX?+y'?+27'>-c4'* =0, (12)

which occurs only when t = % assuming that y and z equal 0. An associated

!

implication, of course, isthat t’:XF, since y' and z" will equal 0. Thesefindingsare

consistent with the results of our analysis of Einstein’s 1905 manuscript. Einstein use of

(x',y',2',t") inthisderivation, instead of the Greek variables (£,7,£,7), does not change

the results of either analysis.
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Analysis Confirmation

While the above analysis has focused on the creation of the equation
ZZ(X2+y2+22_Czt2):X12+y72+Z!2_C2t12’ (13)

we can also show that Equation 13 does not follow mathematically from Equations 6.
Einstein states that Equations 6 are equivalent to each other, which is mathematically

represented as
X2+y?+22-ct’ =0 x?+y?+2'%-ct'* =0 (14)
We will call this statement P. Einstein then mathematically concludes that the above

expression produces

22(X2+y2+22_c2t2):X/2+y!2+212_c2t/2 (15)

We will call this statement Q. Statement P implies Q, such that any solution for Pisalso
asolution for Q, regardless of the value of 4. Therefore Q can be used as a replacement
for P aslong as P would have been True. Such an implication does not enable us to pick

any combination of (x,Y,z,t), but instead we are constrained to only those values that
form a sphere. Using Q as areplacement for P for all combinations of (X, y, z,t)

represents a mathematical error.

While implication does not alow usto use Q for al combinations of (x,y,z,t) and 4,

we need to determine if equivalence will. Although Einstein determines that statement Q

isan identity, it does not remove the requirement that P must be equivalent to Q for all
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valuesof (x,y,z,t) and 4. Thisincludesthe case where Ais0. In such cases, Q can be

True while Pis True, indicating that the statements are not equivalent. Using Q asa
replacement for P represents a mathematical error because the two statements are not

equivalent.

Q does not mathematically follow from P for al values of (x,y,z,t) and 4. Thus, the

remainder of Einstein's 1912 derivation isinvalidated because Q isincorrectly used to

replace P. Thisfinding confirms our earlier analysis.

Einstein’s derivation presented in Appendix 1 of his Relativity book? suffers from the

same inconsi stencies discussed above.

Implications

The commonly accepted definitions of the SR transformation equations are not
mathematically supported since we have found mathematical inconsistencies in each of

X—vt

Einstein’ s derivations. Therefore, the accepted definition of as afixed point

e
eguation remains called into question and this definition cannot be used as a defense

against our analysis. Thisanalysis also lends support to the implication established
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X—vt

earlier that represents a specific instance of ct’ (or ¢z using the terminology of

V2
1-—=
C

his 1905 derivation.).

Correcting the Time Equation

In order to review and effectively illuminate the root cause of the problem in Einstein’s
1905 paper, we borrow terminology from the Computer Science discipline. A functionis

defined as afunction name, a set of parameters, and an equation prototype, such that:

name( parameters) = equation prototype .

Asanexample, f(m,n)=m*7+n,where f isthefunction name, m and n arethe

parameters, and m* 7+ n isthe equation prototype.

In afunction, the parameters represent placeholders for arguments, which are passed to
the function when the function isinvoked, or called. For example, when function f is
called with actual arguments m =5 and n =4, we produce the function invocation

f (5,4), resulting in the equation 5* 7 + 4, which evaluates to 39. Functions can also be
called symbolically, passing variables as arguments. For example, the function can be
called with the variables a and b as actual arguments. In thiscase, since m=a and

n=b, invoking the function as f (a,b) produces a* 7+b asthe equation. We will use
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the term “instantiation” to indicate the specific equation that results from invoking a

function with actual arguments. Thisleads to an important and significant distinction;

A function’ s equation prototype is not the equation, it is atemplate for the

function’ sinstantiated equation.

The instantiated function equation must be based on the actual arguments passed to the

function. Consider that each of the following equivalent functions,
f(mn)=m*7+n
F(X,X,)=X*T+X,

f(s,t)=s*7+t

when invoked as f (a,b), each produces the instantiated equation a* 7+b .

Einstein uses a Partial Differential Equation (PDE) to create the time function 7 .

Einstein begins by stating that x’ = x —vt and then begins to derive the time function ¢

by noting that %(r0 +7,)=1,, where

7, =7(0,0,0,1),

7, =7(x,0,0,t + ),

7, =7(0,00,t+ ——+ X,
cC—-V C+V

resulting in®®

Copyright © 2003-2005 Steven Bryant
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X' ’
+
cC—-Vv C+V

!

X

%[r(o,o,o,t) +7(0,0,0,t + )} = 7(x',0,0,t + ——).

Einstein treats™ t = 7 = 0 (in the above equation), resulting in:

!

1{2’(0,0,0,0) +7(0,00,——+ L)} — 7(x',0,0,——).
2 C—V C+V c—vVv

This equation is then used to build the PDE as®

1( 1 1 )61’ or 1 or
cC—-V C+V

— — =t
2 o0 ox' c-vot

!

2 2

Einstein uses this PDE to build the equation prototype, a(t - j , such that the =

function is defined as:

vx'
r:r(x',y,z,t):a(t— 5 2].
c- -V

Thisis amore complete function definition than contained in Einstein’ s statement that

. . o : v
“Since 7 isalinear function, it follows from these equations that = = a(t - x’j
c°—v

where ¢ is[an unknown function].” 2 We emphasize that, since Einstein uses the PDE

to produce the function, 7 isthe function name, x’, y, z,and t arethefunction

!

parameters, and a(t - j is the equation prototype.

c2 _y2

Asdiscussed earlier, the function can be defined using different parameter variables.

Therefore, each of the following function definitions are equivalent:
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r(a,b,c,d)za(d— A 2}
c -V

VX,
T(X, Xp, X5, Xg) = | X, _CZ—VZ ’

r(x',y,z,t):a(t— 2vx j

c?—v?

Each of these functions yield the same result when invoked with the same arguments.
We now complete the derivation and show that the time function, when invoked and

incorporated into the equation

i{r(0,0,0,0) +7(0,0,0,—%— + L)} - 7(x,00,—),
2 C+V c—V

produces

which simplifiesto

This leads to the conclusion that the instantiated time equation is:

Copyright © 2003-2005 Steven Bryant
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1 ,
7, ZE(TO +72)= (X ,O,O,C V) =a

“Since 7 isalinear function,” we conclude that the time and length transformations must
be based on the instantiated equation 7z, and not on the function equation prototype 7 .

We have shown that 7, = 7(x',0,0, X )=« X-vt and further conclude that
c

C{l‘cz}

E=cr,=cr(x,00 > )=a
c—V

Thisleads to akey finding that, due to the use of the same variable names as the

parameters and as the actual arguments, Einstein incorrectly simplified the stand-alone ¢

!

2 2

transformation using the time equation prototype a(t —
c°—v

X —vt
V2
{1_4

in deriving the & equation resulted in the de facto instantiation of the equation,

] instead of instantiating

the equation prototype to produce « . However, his replacement of t with

!

C—-Vv

producing the correct & transformation « X~V Sincetimeis afunction, both

vt
V2
[1%2}

transformations must be created using the instantiated time equation.
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—vt X —vt
2

X—2 and é: —
ve
C C

2
by 1Il—v—z as the time adjustment. We will show later in this paper that this adjustment
C

Notice that the equations 7, = have not been multiplied

is not automatic and that the actual value of the adjustment is not fixed.

3. Complete and Incomplete Coordinate Systems

With the mathematical problem in Einstein’s time transformation identified and
corrected, we can begin to reevaluate and reinterpret the meaning of the corrected

equations and their implications. Einstein defined two postul ates, stating that:

1. The laws by which the states of physical systems undergo change are not affected,
whether these changes of state be referred to the one or the other of two systems

of co-ordinates in uniform translatory motion.

2. Any ray of light moves in the *“stationary”” system of co-ordinates with the
determined velocity ¢, whether the ray be emitted by a stationary or by a moving

body.?’

Einstein defined one type of coordinate system,”® or inertial reference frame, which he
associated with the transformation equations. However, we observe that areference

frame moving through a wave medium can have one of two principal behaviors. First,
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the wave medium can move with respect to the moving body. Second, the wave medium
does not move with respect to the moving body. In order to revise the postulates, the
definition of a coordinate system needs to be extended. Einstein assumed one type of
coordinate system which had two states; stationary and moving.”>*° This paper retains
the states and defines two types of coordinate systems. a Complete Coordinate System

and an Incomplete Coordinate System. These systems are defined as:

A Complete Coordinate System is a coordinate system, K’ , with respect to

coordinate system K, where the underlying phenomenon under observation

changes velocity by the same amount as the velocity applied to K'.

An Incomplete Coordinate System is a coordinate system, K’, with respect to

coordinate system K, where the underlying phenomenon under observation does

not change velocity by the same amount' as the velocity applied to K’ .

Here we provide an example to illustrate the difference between a Complete and
Incomplete Coordinate System'". Consider atrain on astraight and flat railroad track.
The train represents the moving coordinate system and the ground upon which the tracks

arelaid, the stationary system. To clearly illustrate the concepts behind the two types of

" Initially, this paper assumes that the velocity of the wave does not change at all as result of applying
velocity to the K’ system.

" This example is best read without overlaying it with concepts such as length contraction or time dilation.
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coordinate systems, we replace awave with a surrogate; in this case ajogger."” Begin

with the rear of the train at the origin of the track, which is marked along its entire length
to indicate distance. Thefront of thetrainisat x'. When the train is stationary, ajogger
can travel at velocity’ ¢, from the rear of the train to its front and return again to the rear.

He will travel atotal distance of 2x’. If heismoving at velocity c, the total time for him

!

to make this round trip journey (e.g., one oscillation) is ZX?.

Now consider that the train is moving forward at velocity v. In an Incomplete
Coordinate System, the jogger runs along side the train. Of course v hasto be less than
c or thejogger will never make it to the front of the train. We can again ask the
guestion, how far does the jogger now need to jog in order to reach the front of the train
and again return to the rear? The answer to the question, while mathematically more

!

X

complicated, is found to be 2 . Thisequation is based on summing the time

2

e
required to jog to the front of the train, X , with the time required to jog to the rear,
C—V

! !

X , to produce a the total time for his round trip journey as 2 X __ Thetota

C+V 2
C

" The author acknowledges that ajogger is not a physical manifestation of alight wave. Theintent of these

examplesisto provide clarity around the concepts of Complete and Incomplete Coordinate Systems.
V' While C istypically associated with the speed of light, in our example C simply represents the speed of

the jogger (e.g., 5 km/h).
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distance hejogsis simply this amount of time multiplied by hisvelocity, ¢c. With these
equations, we can ask one final question; how far is half hisjourney (e.g., one-half the

oscillation distance) and how long does that take? The answer to this question is found

! !

by dividing these equations by two, producing X_ and X for length and time,

v? v?
1Y, c{l—cz}

respectively.

Can the last question be answered without explicitly knowing the length of the train?
Fortunately, the length of the train can be determined if the current position of the front
of thetrain, x, itsvelocity, v, and how long it's been traveling, time t, are al known.
We can use thisinformation and apply the Newtonian equation x’ = x —vt to find the
original length x’, enabling us to answer the question. Alternatively, we can simply

X —vt

replace x' with x—vt inthe numerator of the above equationsto produce and

In a Complete Coordinate System, the person isjogging inside of the train. The person
journeys from the rear to the front and back to the rear again. The equations are applied

asif the train were stationary with around trip (e.g., one oscillation) travel length of 2x’
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!

and around trip travel time of 2 X These values can be divided by two to produce x'
C

!

and X , representing one-half the round trip journey length and time, respectively.
C

With two types of coordinate systems defined, the postulates are updated as follows:

1. Thelaws by which the states of physical systems undergo change are not affected,
whether these changes of state be referred to the one or the other of two complete

systems of coordinates in uniform translatory motion.

2. Any ray of light movesin a“stationary” or “complete” system of coordinates with
the determined velocity c, as defined by the properties of that coordinate system,

whether the ray be emitted by a stationary or by a moving body.

The second postulate is further generalized so that it applies to al waves rather than
specifically to rays of light. Assuch, it can be rewritten as follows, where ¢ represents

the speed of the wave under observation:

2. Any wave moves in a ““stationary’ or ““complete” system of coordinates with
the determined velocity c, as defined by the properties of that coordinate

system, whether the wave is caused by a stationary or by a moving body.

Without the distinction between a Complete and an Incomplete Coordinate system, the

velocity of the train would have to be restricted to less than that of the jogger in order to
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satisfy Einstein’s origina postulates. Both the equations and the postulate would apply to

the same type of coordinate system. However, with the postulates revised for Complete

and Incomplete Coordinate Systems, the equations X= v2t and X= vt2 apply to the
Vv v
1- oz c[l— CZ}

Incomplete Coordinate System and the postul ates apply to the Complete Coordinate
System. It must be emphasized that in both types of systems the velocity of thetrainis

not limited to the velocity of the jogger.

4. Mathematical Foundations

With a basic foundation of Complete and Incomplete Coordinate Systems established, we
now begin to algebraically define the equations for a moving Incomplete Coordinate
System by noting that distance is measured in two ways.3! Distance is determined using
non-wave measurements, which Einstein refersto asrigid rods, and are represented in
this paper as discrete values or variables (e.g., X, y, and z). Distanceis aso determined
using wave-based measurements, which Einstein refers to as moving rods, which are
represented as equations multiplying the speed of the wave by the amount of time

required for the wave to travel the necessary distance (e.g., ct,, ct,, and ct,). When

measuring distance in a stationary or Complete Coordinate System, the following

eguations apply such that
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g (16)

We now expand on the train example provided in the previous section. Consider the
dimensions of the train aslength x alongthe X axis, length y along the'Y axis, and
length z along the Z axis. Notice that we use length x instead of x’' aswas used by
Einstein and in our original train example. Thisisto emphasize the importance of the

length along the X axis and recognize that it is not simply atemporary variable.

Asin the previous section, begin with the rear of the train at the origin of the track, which
ismarked along its entire length to indicate distance. The front of thetrainisat x.
When the train is stationary, ajogger can travel at velocity ¢, from the rear of the train to
its front and return again to therear. He will travel atotal distance of 2x. If heis

moving at velocity ¢, the total time for him to make the round trip journey (e.g., one

e A X
oscillation) is 2—.
C

In an Incompl ete Coordinate System, the train is moving along the track at velocity v .
Performing the same mathematical analysis performed in the previous section, we can

determine that the total round trip length and time required for the jogger to complete one
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oscillation is 2% and 2%, respectively. Finally, one-half the round trip
v v
1_07 C|:1—C2j|

and L, respectively.

length and time are X 5 .
v v
1-— cll-—

In order to derive the equations for the Y and Z axes, again consider the train stationary
positioned with the rear at the origin. Therear of the train has two tail lights, one on the
right rear corner and another at the |eft rear corner. The distance between the two tail

lightsalong the Y axisis y. Now position a new jogger at the left rear tail light. When

the train is stationary, the distance that the jogger travels when running from the left tall

light to theright tail light and returning to the left tail light (e.g., one oscillation) is 2y .

If heistraveling at velocity ¢, the total time required to make thisjourney is 21.
C

Now consider that the train is moving forward at velocity v. We again ask the question,
in an Incomplete Coordinate System, how far will the jogger need to travel in order to
reach the right tail light and return to the left tail light, and how long with it take? The

answer for the length, which is found using the Pythagorean Theorem, is 2 y . The

\
1->
C

¥y
V2
CWM_CT
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how far the jogger needs to travel to reach half his distance and how long it will take,

y 2 and y 2
v l v
1——02 c 1——02

the equations are established for the Z axis.

producing for length and time, respectively. Inasimilar manner,

Mathematically, we establish £ as the distance that the jogger runs along the X axis, and
it is determined by multiplying hisvelocity, c, by the time it takes to make one-half the
journey, 7. Similar equations are established for length 77, which is determined by
multiplying velocity ¢ by time 7, , representing one-half the journey along the Y axis;
and along the Z axis using length ¢ and time 7., representing one-half the journey.

These equations are mathematically established as

§=cr,,
m=C,, (17)
g =cr,.

We will refer to the train asthe K’ coordinate system and the ground as the K coordinate

system. The resulting system of wave-based equations for a moving Incomplete

Coordinate Systemis
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X tx
5 2 2-5 = 2
Vv \Y
c c
t
n-—2—, 0, =, (18)
v v
1-— 1-
c? c?
yA t
¢ = , and 7, = L,
1 v? v?
2 1_ci2

In the equations, ¢ is generalized to represent the propagation speed of the wave. In
these equations, ¢ (or the speed of the wave) represents alimit on velocity only when a
wave relationship is required or desired between points within a moving Incomplete
Coordinate System. While the velocity of K’ can exceed thislimit, oscillations will not

occur.

The First Equation Adjustment

The first adjustment to Equations 18 determines the length of K’ as x when x isnot
originally given. As has already been mentioned, when K’ isin motion, its position is

determined in K by multiplying velocity by the amount of time, t,, that K’ has beenin

motion, adding thisto its original position, x, thusarriving at avaluein K. Thisresults

in the Newtonian transformation eguation x, = x + vt, . Rearranging this equation we
obtain x = x, —Vvt, , enabling usto determine the original length x with respect to the K

system when x, and t, are known. Combining the Newtonian equation x = X, — Vt,
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X —

: vt, :
>, Weobtain & = >, andsince & =cz,,

- -

with the wave-based equation & =

we also obtain T, =

Since in amoving system, wave-based and non-wave based distances apply and have
different meanings, the Newtonian transformation and the Incomplete Coordinate System
wave-equations both apply. The non-wave based, commonly referred to as fixed-point,
transformations are reestablished as

X=X, —Vt,

Y=Y

z=1,, (29
and

t=t,.

The Second Equation Adjustment

The second adjustment assumes that time is kept by measuring the oscillations of the
waves traveling along the Y or Z axis. The application of velocity to K” will change the
time oscillations since each oscillation takes longer to complete. Einstein normalizes the

equations and corrects for the effect of velocity on K’ by multiplying the equations by

2
1/1— Z—z . Since the length equations are multiplied by the same adjustment, it can be
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inferred that length is determined by counting the time oscillations. Following the

application of the second adjustment, we complete the algebraic derivation to arrive at

§:X"_Vtk . X, —Vt,
2’ J 2’
-2 c,[1-—
c c
n=y, r, =t,, (20)
¢=1, and 7, =t,.

Equations 20 imply that time along the Y and Z axis has not changed, making it easy to

overlook the time transformations occurring from t, to 7, and from t, to z,.. While

performed mathematically, Einstein does not appear to explicitly acknowledgein his
1905 derivation this time correction nor does he provide reasons for electing to measure

timein K’ using the wave traveling along the Y or Z axes.

Equation Extensions

The two adjustments are not a requirement in this model. Since time can be measured
using timekeeping devices significantly independent of the effects of the given velocity v

on K’, we do not require that a different time be kept in K. Therefore, we do not

2
automatically multiply the equations by , [1- V—2 as atime adjustment, but apply the
C

adjustment when time or length within K’ is determined by measuring the wave

oscillations within that moving Incomplete Coordinate System, or as needed by
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2
application. Furthermore, the adjustment can be as large as multiplying by 1— Z—z if time

is kept along the X axis rather than along the Y or Z axes. We reintroduce « to account

for this adjustment. We also notethat x can be replaced by x, —vt, when needed by

application.

The resulting wave-based equations for an Incomplete Coordinate System are

X tx
f=a V2’ fe =@ 27
1—C7 1_CT
y t,
n:a > , TUZOC 21 (21)
LV LV
2 2
C C
yA t
{=a , and 7, =a——.
2 4 2
-V 1-Y
c? T c?

Notice, however, that Equations 21 can be generalized to produce wave equations for
both Complete and Incomplete Coordinate systems. In order to accomplish this, we
introduce the variable u into the equations. The two extreme cases are determined by u
having avalue of 1, representing an Incomplete Coordinate System and 0, representing a

Complete Coordinate System. Notice that p can take on the range of real values between
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0 and 1, representing variations of an Incomplete Coordinate System. The equations as

applied to Complete and Incomplete Coordinate Systems are revised as”

X tx
é‘:a 2 Tf =a 2
1—,uC2 1—/1C7
t
77=a—y : 7, =0—t—, (22)
v? v2
1-p 1=p5
Z t
{=0—, and 7, =a—+——.
1 2 V2
TH I-p—

5. Experimental Confirmation and Implications

Because there is a mathematical relationship between this model and the Einstein-L orentz
equations, many experiments that have been used as confirmation of the SR equations
will still apply. It isimportant to recognize that Einstein’s SR equations, while

mathematically inconsistent, will produce mathematically correct results for the 7,

VI This paper has derived the equations for complete and incomplete coordinate systems using C asthe
variable representing the sustained velocity for the phenomena under observation (e.g., wave). Thiswas
done to show the similarity between this model and Einstein’s model. And, while we have stated that this
variable should be generalized, one cannot help but to continue to associated it with the speed of light. For
this reason, this variable should be represented using the variable W . This change will be made to future

papers.
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equationwhen t = % and the equations are normalized for time by multiplying by

2
1/1—\/—2 . Thismodel will distinguish itself from Einstein’s for time calculations as the
C

difference between t and X increases. Thereisno difference between the two models
c

2

for length along the X axis with the equations normalized by 1—V—2 . When the
C

equations are not normalized because the time measurement is performed in the

stationary system, the expected difference between the two models of

X ! 5= ! = for length along the X axis begins small, but increases as velocity
v v
1—72 :I__i2
c c
increases.

In agreement with current experimental results, time will appear to run slower ina
moving Incomplete Coordinate System when compared to the stationary reference
system. However, this model associates the time delay in the moving system with the
oscillations traveling farther and taking longer, rather than to unique times within each
system. This mathematically consistent theory aligns with experimental results such as
lves-Stilwell.** Interestingly, this model suggests that the Michelson and Morley class of
experiments should be able to detect absolute movement. This model lends support to

the arguments of Ives-Stilwell, Miller, Cahill, Munéra, and others, that the Michelson and
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Morley results have been incorrectly analyzed and can be explained using alternative

theories. 33,34,35,36,37

Finally, this model suggests that the properties of the wave medium might be controlled
or modified within a Complete Coordinate System. Thiswould enable the wave behavior
to appear faster or ower in the Complete Coordinate System than in the stationary
reference system. It may be possible to modify current experiments associated with

38,39,40

super- and sub-luminal light to validate the behaviors and equations associated with

a Complete Coordinate System.

5. Conclusions

The Relativity in Complete and Incomplete Coordinate Systems model associates no
mathematical significance to alight wave over any other type of wave. In addition, the
model does not support upper limits on velocity, except when oscillations are required in
amoving Incomplete Coordinate System. The model can be used for other types of wave
mediums, which may simultaneously coexist with one another. When the equations are
generalized to all waves, they clearly support mediums in which the wave speeds are
slower than the speed of light as well as mediums in which the wave speeds are faster.
The value for velocity, ¢, isgeneralized to refer to the speed of the wave through the
medium. This model supports the conceptually idea of ayet to be discovered wave

medium with properties different than, and with propagation characteristics significantly

Copyright © 2003-2005 Steven Bryant



Reexamining Special Relativity 37

faster than, those currently associated with EMF. For example, if a quantum wave
medium is discovered, it could define a faster-than-light quantum wave velocity that

could associate this model with entanglement as observed in quantum mechanics.

The Relativity in Complete and Incomplete Coordinate Systems reestablishes the
Newtonian equations for non-wave based, or fixed-point, transformations. The wave-
based equations as presented in Equations 22 are defined as a specific instance of their
more general equations presented in Equations 17. While the wave-based equations

associate the points” (X, Y, 2,t,) with (£,1,¢,7.), thereis not a one-to-one relationship
between the two points since for any & thereisoneand only one 7, . Theimplicationis

that the theoretical predictions of SR, which require a one-to-one rel ationship between
space-time points, will need to be revisited. This model offers an opportunity to revise

and extend our understanding of space and time.
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