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In Section 3 of Einstein’s 1905 Special Relativity paper, he begins the derivation for the 

fixed-point transformations with the equation τξ c=  to produce the transformation 

equations 
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=τ .  This finding is problematic because Einstein’s 

equations, as specified in his 1905 paper, do not agree with the commonly accepted 

interpretation of τξ c=  as a wave-front equation, and with 
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fixed-point equations.  Second, the final equations violate the mathematical rule that 

states that if τξ c=  then 
c
ξτ = , since generally 
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− .  Here we show 

that Einstein’s time equation was incorrectly simplified and that the root cause of this 

mistake is the mistreatment of 22 vc
xvt
−
′

−=τ  as an equation rather than as a function.  

We will explain the meaning of the partial expression 22 vc
xv
−
′

, reexamine the meaning of 
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the  variable given that t τ  is a function instead of an equation, and explain the equations 

associated with fixed-point transformations and wave-fronts. 
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Introduction 
 

Einstein begins his 1905 derivation of the time and length equations with the 

mathematical statement1, ,2 3 τξ c= .  He performs several algebraic operations to 

conclude that4, ,5 6 
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However, we find that generally7,8 
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− .  Mathematically, one of these 

equations must be incorrect.  This finding is not only problematic mathematically, but it 

runs counter to the commonly accepted interpretation of the equations that associates 

τξ c=  with a wave-front, while 
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 are associated with fixed point 

transformations.9  The scope of this paper is to communicate the correct meaning of 

Einstein’s time function, illustrate Einstein’s mathematical mistake, and correct the time 

transformation equation. 

 

Algebraically Deriving the Time Equation 
 

We begin with a concrete example to unambiguously derive the equations for length and 

time along the X axis.  While this example may appear overly simplistic, it provides a 

Copyright © 2005 Steven Bryant. 



Understanding and Correcting Einstein’s Time Transformation Page 4 

common basis for understanding the meaning of Einstein’s linear time function, 

)( 22 vc
xvt
−
′

−= ατ . 

 

Physical scenario 
 
Consider the following scenario.  A bus is parked on a straight road.  The road is marked 

along its entire length, enabling us to measure length.  The rear of the bus is located at the 

origin of the road.  Numerically, the origin is labeled zero (0).  The front of the bus is 

located at position .  Thus, the length of the bus is x′ x′ . 

 

There are two joggers, one positioned inside of the bus and another positioned outside of 

the bus.  Both joggers exhibit and repeat the same behavior; beginning at the rear of the 

bus, they will jog to the front of the bus, turn around, and return to the rear of the bus.  

Both joggers travel at a sustained velocity of .  One complete round-trip cycle – rear to 

front to rear - is referred to as one “oscillation.” 

w

 

Mathematical objective 
 
Given the scenario above, the objective is to determine how long it takes the outside 

jogger to travel the distance of one-half an oscillation when the bus is moving forward 

with velocity v .  We must compute both time and distance (a.k.a., length). 
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Initial mathematical findings 
 
We begin by finding some associated formulas that mathematically describe the scenario.  

Assuming that the bus is stationary, the time required for the jogger to make the roundtrip 

journey is 
w
x′2 .  The total distance traveled by the jogger is simply the amount of time 

required to make the journey multiplied by his velocity , resulting in a total distance of 

.  One half the total distance and travel time is 

w

x′2 x′  and 
w
x′ , respectively.  If the jogger 

is inside the bus, rather than running along side, the same equations apply. 

 

As graphically depicted in Fig. 1b, when the bus is moving at velocity , the time 

required for the outside jogger to run from the rear to the front of the bus is 

v

vw
x
−
′

.  We 

call this time the approaching time.  The time required for the outside jogger to run from 

the front of the bus to the rear is 
vw

x
+
′

.  We call this time the receding time.  When the 

velocity of the bus matches that of the jogger, the approaching time equation is 

undefined.  When the velocity of the bus exceeds that of the jogger, the approaching time 

equation does not make contextual sense because it yields a negative number.  In both 

cases, the outside jogger never reaches the front of the bus.  Thus, even though the bus 

can exceed the velocity of the jogger, the domain of applicability for the equations is 

when the velocity of the bus is less than that of the jogger. 
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Receding
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RecedingDifference

0 0x' x'

A B  

FIG 1.  Graphical depiction of time associated with the outside jogger with a 
stationary bus (A) and a moving bus (B).  Observe that when the bus is moving, the 
time required for the outside jogger to run from the rear to the front increases.  The 
time required for the outside jogger to run from the front to the rear decreases. 
 

Calculating one-half the length and time of one oscillation 
 
We can now answer the questions posed in the Mathematical Objective section.  There 

are three ways to calculate length and time for one-half an oscillation, given the 

approaching and receding times.  One approach is based on the sum of these two time 

values, while the other two approaches are based on their difference. 

 

Approach 1 – Using the sum of the time equations 
 
As illustrated in Fig. 1b, the total time required by the outside jogger to complete one 

oscillation is the sum of the approaching time and the receding time, such that 
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multiplied by velocity w , the total distance for one-half an oscillation is 
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Approaches 2 and 3 – Using the difference of the time equations 
 
As illustrated in Fig. 1b, the difference between the receding time and the approaching 

time is found by subtracting the receding time from the approaching time, such that 

vw
x
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−
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′

, or 22

2
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w
.  One-half of this difference is 22 vw

xv
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′

.  When one-half of 

the difference, or 22 vw
xv
−
′

, is added to the receding time or is subtracted from the 

approaching time, the result is one-half of the oscillation time.  Therefore, as graphically 

illustrated in Fig. 2, one-half the oscillation time can be found as 22 vw
xv

vw
x
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−
−
′

, or as 
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equation.  When this time is multiplied by velocity , the total length for one-half an 

oscillation is found as 
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FIG 2.  If 22 vw
xv
−
′

 is subtracted from the approaching time, 
vw

x
−
′

, or is added to 

the receding time, 
vw

x
+
′

, the result is the time required for one-half an oscillation, 
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Mathematical extensions 
 
There are two changes we will make to our scenario: 

1. Assume that the length of the bus is not initially given, but instead we are given 

the current position of the bus, x , and the amount of time that the bus has been 

traveling, . t

2. Change the variable used to represent the sustained velocity of the jogger from  

to c . 

w
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The first change requires us to compute the length of the bus.  We can use the Newtonian 

equations to compute the original length of the bus as vtxx −=′ , enabling the use of the 

previously established time and length equations.  Alternatively, we can replace the 

numerator, resulting in 
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The second change requires us to re-derive the equations as 
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Applying the changes, the three approaches for computing the time equation for one-half 

an oscillation can be found as 

• Approach 1: 
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where  can be optionally replaced with x′ vtx − , depending on the given information.  

With this common foundation, let’s consider Einstein’s derivation. 
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Finding the solution using Einstein’s Partial Differential Equations 
 
In developing the time transformation, Einstein begins with an unknown function τ .  As 

presented in Fig. 3, Einstein invokes this function three times, each time using different 

arguments, to create a Partial Differential Equation (PDE). 

 

 

Source: Annalen der Physik 17, 891 (1905) 
 
FIG 3.  Einstein’s “function invocation” of the unknown τ  function, which is used 
to derive the Partial Deferential Equation. 
 

Einstein uses the PDE to discover the time function τ , which is 

22),,,(
vc

xvttzyx
−
′

−=′τ .  Notice the similarities between Einstein’s function body, 

22 vc
xvt
−
′

− , and the equation for finding one-half the oscillation time using Approach 2, 

22 vc
xv

vc
x

−
′

−
−
′

.  Also notice that Einstein does not include the parameter list in his 

function definition (see Fig. 4), making it easy to confuse the function with an equation. 
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Source: Annalen der Physik 17, 891 (1905) 
 
FIG 4.  Einstein’s Linear Function created from the Partial Differential Equation.  
He does not specify the function τ  using a parameter list such as ),,,( tzyx′τ .  

Einstein finds α  is 1, enabling us to write the function body as 22 vc
xvt
−
′

− . 

 

Understanding Einstein's Time Function 
 
Since, as Einstein states, “τ  is a linear function,” we examine the parameters to 

understand the function’s meaning.  Mathematically, the result of a PDE is a function.  

We will restate Einstein’s function using the computer science technique called “pseudo-

code” to firmly establish its behavior as a function.  A function requires the parameters to 

first be replaced by actual arguments.  Consider the following pseudo-code that restates 

Einstein’s function, τ , as 

}){_,,,( 22 vc
xvtreturnttimegapproachinzlengthylengthxlength
−
′

−′τ  

Invoking a function takes three steps.  First, the parameters in the function definition 

(e.g., , x′ y , , and t ) are replaced by the arguments used in the function’s invocation 

(e.g., , 0 , , and 

z

x′ 0
vc

x
−

′
).  Second, the replacement is made throughout the function 

body such that,  is replaced with x′ x′ , is replaced by ,  is replaced by , and  is 

replaced with 

y 0 z 0 t

vc
x
−
′

, creating the equation 22 vc
xv

vc
x

−
′

−
−
′

.  Third, this equation is 
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simplified as 
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side of the equation expressed in Fig. 3, the result is the equation† 22 vc
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Einstein incorrectly treats10 the function 22),,,(
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xvttzyx
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−=′τ  as the equation 
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−=τ .  By first replacing x′  with vtx − , followed by simplifying the equation 
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is a mathematical error that is detected by performing the validation where, if τξ c=  

then τξ
=

c
.  Since t  in the linear function refers to the approaching time of the outside 

                                                 
* Alternatively, τ  could be invoked as ),0,0,(

vc
vtxvtx

−
−

−τ . 

† While not derived by Einstein, an alternative PDE based solution can be found as the function 

22),,,(
vc

xvttzyx
−
′

+=′τ .  This function is expressed in pseudo-code as 

}){_,,,( 22 vc
xvtreturnttimerecedingzlengthylengthxlength
−
′

+′τ  and is invoked as ),0,0,(
vc

xx
+
′

′τ . 
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jogger, and t  in the equation vtxx −=′  refers to the amount of time that the bus‡ has 

been moving, it is incorrect to confuse them with each another.§

 

Notice that in producing his length equation, Einstein first performs the replacement of t  

with 
vc

x
−
′

.  This de facto function invocation correctly results in the equation 

22 v
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.  Einstein simplifies the time equation as 
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Lastly, Einstein normalizes the final equations by multiplying them by 2

2

1
c
v

− , making 

it hard to detect the problem.11  He mathematically performs the normalization without 

providing supporting text describing his actions.** 12

 

                                                 
‡ The “bus” is a concrete physical example of the conceptual “coordinate system.”  The outside “jogger” 
represents the phenomenon under observation that oscillates with respect to the moving coordinate system, 
where its velocity is not governed by the velocity of the moving coordinate system.  Einstein’s observation 
with light (or light waves) is only one example of such phenomenon. 
§ A reader with a background in a programming language such as C++ should think in terms of the locally 
and globally scoped variables with the same name (e.g., the global t  variable has one meaning, while the 
local  function variable has another meaning within the context of the function). t
** While Einstein does not explain this action in his manuscript, it is apparent that his intent was to 
normalize the  and  equations so that they do not change as a result of the transformations. y′ z′
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Equations for the Y and Z axes 
 
The equations associated with the Y and Z axes can be readily found using the 

Pythagorean Theorem.  The equations for length and time along the Y axis are denoted 

using the variables η  and ητ , respectively.  Similarly, the equations for length and time 

along the Z axis are denoted using the variables ζ  and ζτ , respectively.  To avoid 

confusion with the other time variables, we will denote time along the X axis as ξτ .  

Thus, we arrive at  
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 Eq. 1 

as the complete system of equations.  Table I summarizes the meaning of these equations. 
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Table I.  Comparison of the Transformation Equations 
 Newton Einstein Bryant 
Fixed Point 
Equations 

vtxx −=′  
yy =′  
zz =′  
tt =′  

 
 
 
 
 
 
 
• Can apply to a point 

and a length. 
• Typically interpreted 

as applying to a 
point. 
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• Commonly interpreted 

as applying to a point. 
• Incorrect time equation. 
• Equations have been 

normalized by 
multiplying each by 
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vtxx −=′  
yy =′  
zz =′  
tt =′  

 
 
 
 
 
 
 
• Can apply to a point and a length 
• Reestablishes the Newtonian 

equations. 
• Applies to a length when used with the 

One-Half Oscillation Equations. 

Wave Front 
Equations 

Not Applicable. τξ c=  ξτξ c= , ητη c= , and ζτζ c=  

One-Half 
Oscillation 
Equations 

Not Applicable. Not Applicable. 
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=ζ , 

2
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1
c
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z

−
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• Equations can be normalized. 
• x′  can be replaced with vtx − . 
• Represents a specific instance of the 

wave front equations. 
• Defines length and time equations for 

X, Y, and Z axes. 
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Conclusion 
 

This paper has explained the root cause of Einstein’s incorrect time transformation 

equation.  The cause of the incorrect time transformation was Einstein’s mistreatment of 

the linear time function as an equation.  By unambiguously explaining the meaning of the 

terms  and t 22 vc
xv
−
′

 in the function )(),,,( 22 vc
xvttzyx
−
′

−=′ ατ , we were able to 

explain the true meaning of the time function and find the correct mathematical equation. 

 

The correction of the time equation along with the revised understanding of the equations 

requires us to revisit our understanding of space and time.  Newton introduced fixed-

point transformations.  Einstein extended Newton’s model by introducing wave front 

equations, modifying Newton’s fixed-point equations in the process.  This model 1) 

modifies Einstein’s fixed-point equations, reestablishing Newton’s equations, 2) corrects 

Einstein’s incorrect time equation, and 3) introduces equations for one-half oscillations.  

These findings require Einstein’s postulates to be extended for Complete and Incomplete 

Coordinate systems, which describe the behaviors of the inside and outside “joggers,” 

respectively.  This important extension is beyond the scope of this paper, but is 

established in Reexamining Special Relativity.13
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